Перевод с английского
<<  Theory W Software Management На зоопарк фон  >>
Recap: Push Notification Service
Recap: Push Notification Service
Recap: Push Notification Service
Recap: Push Notification Service
Storage/Sync Service Example: iCloud
Storage/Sync Service Example: iCloud
Amazon Silk Split-Browser
Amazon Silk Split-Browser
Amazon Silk Split-Browser
Amazon Silk Split-Browser
Example: iphone 5
Example: iphone 5
Example: iphone 5
Example: iphone 5
Example: iphone 5
Example: iphone 5
CPU Power Model
CPU Power Model
Stochastic DVS
Stochastic DVS
Odyssey: An Example Client Architecture
Odyssey: An Example Client Architecture
Odyssey: An Example Client Architecture
Odyssey: An Example Client Architecture
Odyssey: An Example Client Architecture
Odyssey: An Example Client Architecture
Client System Model
Client System Model
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Server/Content Adaptation: Examples
Example: Adapting Audio Content
Example: Adapting Audio Content
Frame Encoding: Block Transform Encoding
Frame Encoding: Block Transform Encoding
Basis Functions of DCT
Basis Functions of DCT
Examples
Examples
Examples
Examples
Examples
Examples
Example Benefit of Cloud (RTT -> Server)
Example Benefit of Cloud (RTT -> Server)
How Does a Programmer Use MAUI
How Does a Programmer Use MAUI
MAUI Profiler
MAUI Profiler
MAUI Implementation
MAUI Implementation
Bayou Write Operation: An Example
Bayou Write Operation: An Example
Bayou Write Operation: An Example
Bayou Write Operation: An Example
Flexible Chunk Size
Flexible Chunk Size
Картинки из презентации «Apple на wwdc 2012» к уроку английского языка на тему «Перевод с английского»

Автор: Yang Richard Yang. Чтобы познакомиться с картинкой полного размера, нажмите на её эскиз. Чтобы можно было использовать все картинки для урока английского языка, скачайте бесплатно презентацию «Apple на wwdc 2012.ppt» со всеми картинками в zip-архиве размером 4756 КБ.

Apple на wwdc 2012

содержание презентации «Apple на wwdc 2012.ppt»
Сл Текст Сл Текст
1Mobile Software Development Framework: 32maintains/monitors available resources no
Adaptive Mobile Applications. 10/23/2012 need to have each application re-implement
Y. Richard Yang. 1. the monitoring An application registers a
2Outline. Admin Mobile cloud services resource descriptor and an upcall event
Push notification service Track service handler with the OS OS notifies the
Storage service. 2. application upon detecting resource
3Admin. HW3 Project ideas. 3. changes Application adjusts requests to
4Recap: Example Mobile Cloud Services. the server. 32.
Push notification service Location based 33Client System Model. 33.
service, e.g., Track service (supporting 34Outline. Admin and recap Adaptive
location based services) Storage services, mobile applications Client adaptation
e.g., iCloud, Google Drive, Dropbox Proxy Server adaptation. 34.
service, e.g., Kindle Split Browser 35Server/Content Adaptation: Examples.
Recognition/synthesis services. 4. Objective: automating adaptation. 35.
5Recap: Push Notification Service. A 36Example: Adapting Audio Content. Send
single persistent connection between Push a lower resolution stream as the redundant
Notification Service (PNS) and Mobile information, e.g. nominal stream at 64
Device Authorization App register with PNS kbps and redundant stream at 13 kbps (such
Device app registers with PNS and forwards as GSM). 2. 3. 36.
registration to PNS App can send only to 37Example: Adapting Fidelity of
registrations Scalability, fault Video/Image Content? Potentially many
tolerance, generality Send only dimensions frame rate (for video) image
notification, does not hold data. 5. size quality of image Usage: e.g., data
6Recap: Track Service. Creation. TC acceleration offered by many carriers. 37.
MakeCollection(GroupCriteria criteria, 38Frame Encoding: Block Transform
bool removeDuplicates). Manipulation. TC Encoding. DCT. Quantize. Zig-zag.
JoinTrackCollections (TC tCs[], bool 011010001011101... 38.
removeDuplicates) TC SortTracks (TC tC, 39Discrete Cosine Transform. ? ?
SortAttribute attr) TC TakeTracks(TC tC, 4C(u)C(v). (2j+1)up. (2k+1)vp. f(j,k) cos.
int count) TC GetSimilarTracks (TC tC, cos. F[u,v] =. n2. 2n. 2n. where. 1. for
Track refTrack, float simThreshold) TC w=0. ? 2. C(w) =. for w=1,2,…,n-1. 1. DCT
GetPassByTracks (TC tC, Area[] areas) TC is better at reducing redundancy than
GetCommonSegments(TC tC, float Discrete Fourier Transform but it is more
freqThreshold). 6. computationally expensive. n-1 n-1. j=0
7API Usage: Ride-Sharing Application. k=0. 39.
// get user’s most popular track in the 40Basis Functions of DCT. An image is a
morning TC myTC = MakeCollection(“name = superposition of basis functions DCT
Maya”, [0800 1000], true); TC myPopTC = computes the contribution of each basis
SortTracks(myTC, FREQ); Track track = function - F[u,v]: for the basis function
GetTracks(myPopTC, 0, 1); // find tracks at position [u, v]. 40.
of all fellow employees TC msTC = 41Example: MPEG Block Encoding.
MakeCollection(“name.Employer = MS”, [0800 Quantize. DCT. original image. zigzag.
1000], true); // pick tracks from the run-length and Huffman encoding of the
community most similar to user’s popular stream. 10011011100011... Discussion: how
track TC similarTC = to generate different encoding rates? DC
GetSimilarTracks(msTC, track, 0.8); component. AC components. coded bitstream
Track[] similarTracks = < 10 bits (0.55 bits/pixel). 41.
GetTracks(similarTC, 0, 20); // Verify if 42Examples. 42.
each track is frequently traveled by its 43Outline. Admin and recap Adaptive
respective owner User[] result = mobile applications Client adaptation
FindOwnersOfFrequentTracks(similarTracks); Server adaptation Proxy and job partition.
8Outline. Admin and recap Mobile Cloud 43.
Services Push notification service 44Example Benefit of Cloud (RTT ->
Location based service Storage service. 8. Server). 44.
9Storage/Sync Service. Store content in 45Example: MAUI. Maui server.
cloud to be accessible by multiple Smartphone. Application. Application. Maui
selected devices Deployed services, e.g., Controller. 45.
iCloud Google Drive 46How Does a Programmer Use MAUI? Goal:
https://developers.google.com/drive/integr make it dead-simple to MAUI-ify apps Build
te-android-ui DropBox. 9. app as a standalone phone app Add .NET
10Storage/Sync Service Example: iCloud. attributes to indicate “remoteable” Follow
Backend Hosted by Windows Azure and Amazon a simple set of rules.
AWS Uses HTTPS to send to servers Client 47MAUI Proxy. Maui server. Smartphone.
storage models Key Value Store UIDocument Application. Application. Handles Errors.
Core data More details: see iCloud Maui Controller.
sessions 48MAUI Profiler. Profiler. Annotated
https://developer.apple.com/videos/wwdc/20 Callgraph. CPU Cycles. State size. Device
2/?id=209. 10. Profile. Execution Time. Network Latency.
11Problems Caused by Mobile Storage. Callgraph. Network Bandwidth.
Read miss stalls progress (user has to 49MAUI Solver. A sample callgraph. C
wait for data) Synchronization/consistency 5000 mJ 3000 ms. 10000 mJ. B 900 mJ 15ms.
user may see outdated data user 1000mJ. 25000 mJ. D 15000 mJ 12000 ms.
modification may generate conflicts. 11. Energy and delay for state transfer. A.
12Approaches. Read miss explicit user Computation energy and delay for
file selection automatic execution.
hoarding/prediction, e.g., CODA, SEER 50Is Global Program Analysis Needed?
Synchronization/consistency keep InitializeFace Recognizer 5000 mJ. 10000
modification logs and develop merge tools, mJ. FindMatch 900 mJ. User Interface.
e.g., Bayou efficient file comparisons and 1000mJ. 25000 mJ. DetectAndExtract Faces
merging, e.g., rsync, LBFS. 12. 15000 mJ. Cheaper to do local.
13Amazon Silk Split-Browser. Dynamic 51Is Global Program Analysis Needed?
split browsing Intelligently partition InitializeFace Recognizer 5000 mJ. 10000
work between local and Amazon cloud. 13. mJ. FindMatch 900 mJ. User Interface.
http://www.extremetech.com/mobile/97587-am 1000mJ. 25000 mJ. DetectAndExtract Faces
zon-silk-bridging-the-gap-between-desktop- 15000 mJ. Cheaper to do local. Cheaper to
nd-tablet-web-browsers. do local.
14Outline. Admin and recap Adaptive 52Is Global Program Analysis Needed?
mobile applications. 14. 20900mJ. InitializeFace Recognizer. User
15Adaptive Mobile App: Bigger Picture. Interface. FindMatch. 1000mJ.
in-net proxy. device. in-net service. DetectAndExtract Faces. Cheaper to
On-device app/sys adaptation. Device-aware offload.
service delivery. Service partition. 15. 53MAUI Implementation. Platform Windows
16Outline. Admin and recap Adaptive Mobile 6.5 .NET Framework 3.5 HTC Fuze
mobile applications Client adaptation. 16. Smartphone Monsoon power monitor
17Example: iphone 5. Applications Chess Face Recognition Arcade
http://www.anandtech.com/show/6324/the-iph Game Voice-based translator.
ne-5-performance-preview. 17. 54Questions. How much can MAUI reduce
18CPU Power Consumption Model. The power energy consumption? How much can MAUI
consumption rate P of a CMOS processor improve performance? Can MAUI Run
satisfies where k is a constant, C the Resource-Intensive Applications?
capacitance of the circuit, f the CPU 55How much can MAUI reduce energy
frequency, and V the voltage When the consumption? Face Recognizer. Big savings
supply voltage V is lower, even on 3G. An order of magnitude
charging/discharging time is longer; thus improvement on Wi-Fi.
frequency should be lower => P ~ O(V3). 56How much can MAUI improve performance?
18. Face Recognizer. Improvement of around an
19CPU Power Model. Discussion: what order of magnitude.
voltage to operate on? throughput. 19. 57Latency to server impacts the
20Dynamic Voltage Scaling. Basic idea: opportunities for fine-grained offload.
determining voltage according to program Arcade Game. Solver would decide not to
response time requirement For normal offload. Up to 40% energy savings on
applications, give reasonable response Wi-Fi.
time For multimedia applications, use the 58Can MAUI Run Resource-Intensive
deadline to determine voltage. 20. Applications? Translator. Can be run on
21Architecture. multimedia applications. the phone with MAUI. CPU Intensive even on
monitoring. requirements. scheduling. a Core 2 Duo PC.
scheduler. profiler. speed adaptor. CPU. 59Can MAUI Adapt to Changing Conditions?
demand distribution. time constraint. 11KB + missiles. 11KB + missiles. 11KB +
speed scaling. 21. missiles. missiles. Required state is
22Demand Prediction. Online profiling smaller. Complexity increases with # of
and estimation: count number of cycles missiles. *Missiles take around 60 bytes
used by each job. CDF F(x) = P [X ? x]. 1. each.
cumulative probability. Cmin=b0. br=Cmax. 60Case 1. Zero Missiles Low latency (RTT
br-1. 22. < 10ms). HandleEnemies. DoFrame.
23Observations. Demand distribution is DoLevel. HandleBonuses. Offload starting
stable or changes slowly. 23. at DoLevel. HandleMissiles. Computation
24CPU Resource Allocation. How many cost is close to zero. *Missiles take
cycles to allocate to a multimedia job? around 60 bytes each.
Application should meet ? percent of 61Case 2. 5 Missiles Some latency (RTT =
deadlines ? each job meets deadline with 50ms). HandleEnemies. DoFrame. DoLevel.
probability ? ? allocate C cycles, such HandleBonuses. Very expensive to offload
that F (C ) =P [X ? C ] ? ? 24. everything. Little state to offload.
25How Fast to Run the CPU? Assume the HandleMissiles. Only offload Handle
strategy is to run job i at a fix (also Missiles. Most of the computation cost.
called uniform) speed Si Assume it needs *Missiles take around 60 bytes each.
Ci cycles during a time duration of Pi 62Bayou Write Operation: An Example. 62.
Fact: since power is a convex function of 63Can MAUI Adapt to Changing Conditions?
frequency, if a job needs C cycles in a Adapt to: Network Bandwidth/Latency
period P, then the optimal frequency is Changes Variability on method’s
C/P, namely the lowest constant frequency. computational requirements Experiment:
25. Modified off the shelf arcade game
26Why Not Uniform Speed? Intuitively, application Physics Modeling (homing
uniform speed achieves - minimum energy if missiles) Evaluated under different
use the allocated exactly However, jobs latency settings.
use cycles statistically - often complete 64Bayou Write Operation: An Example. 64.
before using up the allocated - potential 65Motivation. The CODA system assumes
to save more energy ? stochastic DVS. 26. that modifications are kept as logs (CML)
27Stochastic DVS. For each job find a user sends the logs to the servers to
speed Sx for each allocated cycle x time update If the storage of a client is
is 1/Sx and energy is (1 - F(x))S3x. 27. limited, it may not be able to save logs
28Example Speed Schedule. cycle: speed: then upon reconnection, the cache manager
100 MHz. 200 MHz. 400 MHz. Observation: needs to find the difference between the
speed up the processor with increasing stored file and its local cached copy same
clock cycles. 28. problem exists for the rsync tool !
29DVS. A1. A2. A1. context switch Store Question: how to efficiently compare the
speed for switched-out New speed for differences of two remote files (when the
switched-in. speed up within job. switch network connection is slow)? 65.
back. speed. execution. 29. 66LBFS: Low-Bandwidth File System. Break
30Implementation. Hardware: HP N5470 Files into chunks and transfer only
laptop Athlon CPU (300, 500, 600, 700, modified chunks Fixed chunk size does not
800, 1000MHz) round speed schedule to work well why? 66.
upper bound. system call. process control 67Flexible Chunk Size. Compute hash
block. DVS modules PowerNow speed scaling value of every 48 byte block if the hash
Soft real-time scheduling. standard Linux value equals to a magic value, it is a
scheduler. Extension to Linux kernel chunk boundary. 67.
2.4.18 716 lines of C code. 30. 68Bayou: Managing Update Conflicts.
31Evaluation: Normalized Energy. Reduces Basic idea: application specific conflict
power consumption However, limited due to detection and update Two mechanisms for
few speed options. 31. automatic conflict detection and
32Odyssey: An Example Client resolution dependency check merge
Architecture. Application indicates procedure.
resource capabilities in its request to http://zoo.cs.yale.edu/classes/cs422/2011/
service Operating system ib/terry95managing.pdf. 68.
Apple на wwdc 2012.ppt
http://900igr.net/kartinka/anglijskij-jazyk/apple-na-wwdc-2012-236709.html
cсылка на страницу

Apple на wwdc 2012

другие презентации на тему «Apple на wwdc 2012»

«Переводчик с английского на русский» - Основные этапы. Плюсы: минимальная компьютерная подготовка переводчика. Ваш Проводник в Мире Многоязычной Информации. Выравнивание памяти переводов. Перевод с использование памяти переводов. Минимизация работы по подвёрстке ПО. Минусы: поддержка памяти переводов. Услуги. Минусы: большие затраты на вычитку.

«Перевод названий фильмов» - Функции заголовка. Некоторые любят погорячее. Интересные примеры. Наиболее употребляемый тип перевода. Результаты опроса. Особенности перевода. Трансформация. Название фильма в оригинале. Особенности перевода названий англоязычных фильмов. Замена названия. Типы перевода названий фильмов. Название. Перевод названия фильма.

«Профессиональный перевод» - Одобрение — ОК Неодобрение, осуждение — ОК. УПС базируется на сокращениях, аббревиатурах как широко распространенных, так и индивидуальных. Как записывать? Желательно владение переводческой нотацией, или сокращенной записью. Сокращения в УПС. Сокращенная буквенная запись; Аббревиация; Цифровое обозначение; Символизация.

«Перевод текстов» - Область применения PROMT Translation Suite. Преимущества. Революция в индустрии перевода - уникальный продукт PROMT Translation Suite. Перевод сегментов текста. Сохранение результатов редактирования и перевода в базе. Машинный перевод. Технология Translation Memory ™. Пополнение базы переводов. Общая схема работы с PROMT Translation Suite.

«Перевод рекламных текстов» - Advertising. Особенности использования. Сравнения. Особенности перевода рекламных текстов. Актуальность проблемы. Значение слова «реклама». Средства художественной выразительности. Соединения. Проблемы, связанные с переводом рекламных текстов. Функции рекламных текстов. Прилагательные и наречия. Универсальность.

«Технический английский» - Упражнения. Электронное пособие по изучению курса технического перевода. Конкурсы. Перевод интернационализмов. Префиксы – приставки. Классификация перевода. Требования к практическому владению навыками перевода. Русские и английские «Кулибины». Классификация по качеству. Полисемия – случай, когда слово имеет более одного значения.

Перевод с английского

13 презентаций о переводах с английского
Урок

Английский язык

29 тем
Картинки