Работа с базами данных
<<  Introductory Overview of SDSS Data Products BIG DATA Новый вызов  >>
Before you perform analysis in SPSS, let’s set up the following option
Before you perform analysis in SPSS, let’s set up the following option
SPSS Data View
SPSS Data View
SPSS Variable View
SPSS Variable View
Figure 1. Data from Hell
Figure 1. Data from Hell
Data from Heaven
Data from Heaven
Entering Date in Excel
Entering Date in Excel
Entering Time in Excel
Entering Time in Excel
In Excel, go to: Format, Cells, select Time under Category, Choose
In Excel, go to: Format, Cells, select Time under Category, Choose
Entering Date, Time in SPSS
Entering Date, Time in SPSS
Importing data from Excel spreadsheet into SPSS
Importing data from Excel spreadsheet into SPSS
Importing data from Excel spreadsheet into SPSS
Importing data from Excel spreadsheet into SPSS
Importing data from SPSS to Excel
Importing data from SPSS to Excel
Data merging in SPSS (1)
Data merging in SPSS (1)
Data merging in SPSS (2)
Data merging in SPSS (2)
Data merging in SPSS (3)
Data merging in SPSS (3)
Data cleaning in SPSS (2): Recoding existing variables (2)
Data cleaning in SPSS (2): Recoding existing variables (2)
Data cleaning in SPSS (1): Recoding existing variables (3)
Data cleaning in SPSS (1): Recoding existing variables (3)
Data cleaning in SPSS (1): Recoding existing variables (4)
Data cleaning in SPSS (1): Recoding existing variables (4)
Data Cleaning in SPSS (2) Creating a new variable for Diastolic blood
Data Cleaning in SPSS (2) Creating a new variable for Diastolic blood
Data Cleaning in SPSS (3)
Data Cleaning in SPSS (3)
Data Cleaning in SPSS (4): Data labeling and formatting (1) Specifying
Data Cleaning in SPSS (4): Data labeling and formatting (1) Specifying
Data Cleaning in SPSS (4): Data labeling and formatting (2)
Data Cleaning in SPSS (4): Data labeling and formatting (2)
Data Cleaning in SPSS (4): Data labeling and formatting (3)
Data Cleaning in SPSS (4): Data labeling and formatting (3)
Data Cleaning in SPSS (4): Data labeling and formatting (4)
Data Cleaning in SPSS (4): Data labeling and formatting (4)
Data Cleaning in SPSS (4): Data labeling and formatting (5)
Data Cleaning in SPSS (4): Data labeling and formatting (5)
Retrieve data property from existing files in SPSS (2)
Retrieve data property from existing files in SPSS (2)
Retrieve data property from existing files in SPSS (3)
Retrieve data property from existing files in SPSS (3)
Using syntax in SPSS (1): Creating a new syntax file
Using syntax in SPSS (1): Creating a new syntax file
Using syntax in SPSS (2): Editing a syntax file
Using syntax in SPSS (2): Editing a syntax file
Using syntax in SPSS (3): Saving a syntax file
Using syntax in SPSS (3): Saving a syntax file
Using syntax in SPSS (4): Opening an existing syntax
Using syntax in SPSS (4): Opening an existing syntax
Using a syntax in SPSS (5): Example Syntax
Using a syntax in SPSS (5): Example Syntax
Using syntax in SPSS (6):Recoding syntax from command dialog box
Using syntax in SPSS (6):Recoding syntax from command dialog box
Saved syntax from the previous PASTE command
Saved syntax from the previous PASTE command
Using syntax in SPSS (7): Executing the syntax
Using syntax in SPSS (7): Executing the syntax
Картинки из презентации «Spss data entry как делать» к уроку информатики на тему «Работа с базами данных»

Автор: biostatistics. Чтобы познакомиться с картинкой полного размера, нажмите на её эскиз. Чтобы можно было использовать все картинки для урока информатики, скачайте бесплатно презентацию «Spss data entry как делать.ppt» со всеми картинками в zip-архиве размером 2103 КБ.

Spss data entry как делать

содержание презентации «Spss data entry как делать.ppt»
Сл Текст Сл Текст
1How to enter data in SPSS. 1.1 24Note in Data merging in SPSS (3).
Introduction of SPSS. 1.2 Data Entry. 1.3 Cases must be sorted in the same order in
Data Cleaning using SPSS. 1. both data files. If one or more key
2Statistical Software Packages Most variables are used to match cases, the two
Commonly Cited in the NEJM and JAMA data files must be sorted by ascending
between 1998 and 2002. Number of articles order of the key variable. Variable names
software was sited. 302. SAS. 87. SPSS. in the second data file that duplicate
STATA. 80. 49. Epi Info. 43. SUDAAN. variable names in the working data file
S-PLUS. 33. StatXact. 18. 9. BMDP. 9. are excluded by default because Add
StatView. Statistica. 8. 0. 100. 200. 300. Variables assumes that these variables
400. 2. contain duplicate information. Thus before
3Before you perform analysis in SPSS, you merge data files, you need carefully
let’s set up the following option. Go to to check two variables with the same name.
Edit, Options,.. 3. If two variables contain different
4SPSS Windows has 3 windows: Data information, SPSS automatically delete
Editor. Viewer or Draft Viewer which variable from the file, which is being
displays the output files. Syntax Editor, merged into (Birthday.sav). 24.
which displays syntax files. The Data 251.3 Data Cleaning in SPSS. 1.
Editor has two parts: Data View window, Re-coding existing variables. 2. Creating
which displays data from the active file new variables. 3. Creating new variable
in spreadsheet format. Variable View from existing variables. 4. Data labeling
window, which displays metadata or and formatting. 25.
information about the data in the active 26Data cleaning in SPSS (1): Recoding
file, such as variable names and labels, existing variables (1). We want to use
value labels, formats, and missing value numeric coding for group instead of A and
indicators. 4. B. Old New ID Group Group 1 A 0 2 A 0 3 B
5SPSS Data View. 5. 1 4 B 1. 26.
6SPSS Variable View. 6. 27Data cleaning in SPSS (2): Recoding
71.2 Data Entry into SPSS. There are 2 existing variables (2). From SPSS dialog
ways to enter data into SPSS: 1. Directly box, go to: Transform Recode Into Same
enter in to SPSS by typing in Data View. variables. 27.
2. Enter into other database software such 28Data cleaning in SPSS (1): Recoding
as Excel then import into SPSS. Let’s existing variables (3). 1. Select Group
start with the second option, using data from the variable box into String
in Excel. 7. Variables box 2. Click on Old and new
8Figure 1. Data from Hell. 8. Values to proceed. 28.
9Data from Heaven. 9. 29Data cleaning in SPSS (1): Recoding
10How to move from Hell to Heaven (1): existing variables (4). 1. Type the old
1. Add a patient’ ID number. 2. Delete the value and the new value you want to
first row with the title of the project. convert into 2. Click on Add (To remove,
3. Delete the 2 rows under the variable or change, click on Change or Remove) 3.
name. 4. Delete the 2 row between the Type all values in the Old ? New box, then
groups. 5. Delete the row of average at click Continue 4. Click OK to execute the
the bottom. 6. Add a variable called group commands. 29.
and code the first 10 with Drug A as 1 and 30Data Cleaning in SPSS (2) Creating a
the next 10 as 2. 7. Change the variable new variable for Diastolic blood pressure
names to less than 8 or 8 characters with (DiasBP): In SPSS, go to Variable View,
no spaces, (you can use numeric, but not Then type DiasBP at the last row under
starting with numeric, avoid symbols). 8. Name. Go back to Data View and directly
Insert 2 columns before BP as SYSBP and type diastolic blood pressure to separate
DIASBP. Delete the BP text column. 9. from SysBP. For ease of data entry, you
Change missing values, NA, unknown, ?, to can move DiasBP right after SysBP. Now
blanks. 10. Change age of 6 months to 0.5 also edit sysBP. 30.
(years). Fix errors. 11. Code males=1 and 31Data Cleaning in SPSS (3). Computing
females=2. 12. Code complications as 0 for patient’s age from birthday and date
no and 1 for yes. 13. Go back to the enrolled into the study. 31.
source and complete the missing 32Data Cleaning in SPSS (4): Data
information. 14. If a column was entered labeling and formatting (1) Specifying
as a string (words), you may have to Type of Variable. HT 61.00 68.00 47.00
select the column and format the cells for 66.00 72.00 67.00 72.00 72.00 66.00 60.00
change it to numeric. 10. 61.00 59.00 73.00 65.00 71.00 68.00 69.00
11General guidelines for data entry. 1. 66.00 66.00 68.00. 32.
Give each variable a valid name (8 33Data Cleaning in SPSS (4): Data
characters or less with no spaces or labeling and formatting (2). Data
punctuation, beginning with a letter not a Labeling. 33.
numeric number). Short, easy to remember 34Data Cleaning in SPSS (4): Data
word names. Avoid the following variable labeling and formatting (3). Variable
names: TEST, ALL, BY, EQ, GE, GT, LE, LT, Formatting. 34.
NE, NOT, OR, TO, WITH. These are used in 35Data Cleaning in SPSS (4): Data
the SPSS syntax and if they were labeling and formatting (4). Specifying
permitted, the software would not be able missing values. 35.
to distinguish between a command and a 36Data Cleaning in SPSS (4): Data
variable. Each variable name must be labeling and formatting (5). Measurement
unique; duplication is not allowed. category. 36.
Variable names are not case sensitive. The 37Retrieve data property from existing
names NEWVAR, NewVar, and newvar are all files in SPSS (1). This property is
considered identical. 2. Encode extremely handy when you need to construct
categorical variables. Convert letters and a similar database for expanded, or new
words to numbers. 3. Avoid mixing symbols group of patients. You can save time on
with data. Convert them to numbers. 4. creating variable label, format, etc,
Give each patient a unique, sequential rather you can retrieve these information
case number (ID). Place this ID number in from existing files. Now let’s create a
the first column on the left. 11. copy from “Data from heaven.sav” after you
125. Each variable should be in its own delete formats and labels you just
column. Change to: Animal Group 1 0 2 0 3 created. Save it as “Data from hell to
1 4 1. Avoid this: Animal Control1 heaven without format.sav”. Modified.
Control2 Experiment1 Experiment2. * Do not Note: Before you perform this commands,
combine variables in one column. * It is make sure that Type of variables matched
recommended to use 0/1 for 2 groups with 0 between the two datasets. 37.
as a reference group. 6. All data for a 38Retrieve data property from existing
project should be in one spreadsheet. Do files in SPSS (2). 38.
not include graphs or summary statistics 39Retrieve data property from existing
in the spreadsheet. 12. files in SPSS (3). 39.
137. Each patient should be entered on a 40Using syntax in SPSS: SPSS has its
single line or row. Do not copy a great advantage in producing high level
patient’s information to another row to graphs and statistical analysis by easy
perform subgroup analysis. 8. However when point-and-click operations. However, some
data are repeatedly collected over a people may criticize SPSS for
patient, it’s recommended to have irreproducibility of analysis which were
patient-day observation on a simple line conducted before. In fact, SPSS has a high
to ease data management. SPSS has a nice level capacity of programming syntax which
feature to convert from the longitudinal can be saved and repeatedly operated.
format to horizontal format. When the Throughout the course, I will provide “how
number of repeats are few 2 or 3, to” box to conduct all analysis used in
horizontal format may be preferred for the class, here I will show how to save
simplicity. Longitudinal data entry. your commands in syntax. I highly
Horizontal data entry. Date ID SYSBP recommend the use of syntax for better
1/2/2005 1 130 1/3/2005 1 120 1/4/2005 1 organization on haw has been done. 40.
120 3/1/2005 2 110 3/2/2005 2 140. ID 41Using syntax in SPSS (1): Creating a
SYSBP1 SYSBP2 SYSBP3 1 130 120 120 2 110 new syntax file. 41.
140. 13. 42Using syntax in SPSS (2): Editing a
149. For yes/no questions, enter “0” for syntax file. 42.
no and “1” for yes. Do not leave blanks 43Using syntax in SPSS (3): Saving a
for no. Do not enter “?”, “*”, or “NA” for syntax file. 43.
missing data because this indicates to the 44Using syntax in SPSS (4): Opening an
statistical program than the variable is a existing syntax. 44.
string variable. String variables cannot 45Using a syntax in SPSS (5): Example
be used for any arithmetic computation. Syntax. I find syntax very handy
10. Put ordinal variables into one column especially when you get tired of clicking
if they are mutually exclusive. Preferred: so many times! 45.
Pain 1 2 3. Avoid: Pain Mild Moderate 46Using syntax in SPSS (6):Recoding
Severe 1 0 0 0 1 0 0 0 1. 11. Do not make syntax from command dialog box. You can in
columns wider then 8 characters, unless fact use command dialog box (point and
absolutely essential. 14. click method) as your main tool and still
15Entering Date in Excel. In Excel,go save what you did with point and click
to: Format, Cells, select Date under into syntax. Then later you can simply
Category, Choose Type for a format you execute the syntax to repeat the analysis.
like. 15. Step 1. 46.
16Entering Time in Excel. In Excel, go 47Saved syntax from the previous PASTE
to: Format, Cells, select Time under command. Step 2: 47.
Category, Choose Type for a format you 48Using syntax in SPSS (7): Executing
like. 16. the syntax. 48.
17In Excel, go to: Format, Cells, select 49Data confidentiality. Data need to be
Time under Category, Choose Data/Time stored in a secure locked place, need to
format. Entering Date / Time in Excel. 17. be back-up daily or once a week. When you
18Entering Date, Time in SPSS. In SPSS, send your data to a biostatistician for
open Variable View, Click Type for the further statistical analysis, delete
variable you want to Assign date format, patient name, social security numbers,
click on Date, and select a format of your medical record numbers, actual dates
choice. 18. (birth day, admission date, etc). 49.
19Importing data from Excel spreadsheet 50Communication with a biostatistician:
into SPSS. In SPSS, go to: File, Open, Most statisticians prefer to have data
Data Select Type of file (for example, submitted as SPSS format or in the
Excel) you want to open Select File name statistical software they use. An
you want to open. 19. advantage of entering data directly into a
20Importing data from SPSS to Excel. In statistical package, such as SPSS is that
SPSS, go to: Data, Save as, Select Type of one can enter variable label and value
file (for example, Excel) you want to save labels in the file. When communicating
into Give File name you want to save into. with a biostatistician, also describe the
20. research problem, study hypothesis, and
21Data merging in SPSS (1). Make sure the primary comparison that you are
that both files are sorted by Key variable interested in. Explain any variables that
in ascending order In SPSS, open Data from need to be controlled for. Explain the
Hell to Heaven.sav Select Add Variables code used for missing values. Also answer
under Data, Merge Files. 21. the following questions: What is the name
22Data merging in SPSS (2). 4. Select of your study? What is the purpose of your
the dataset you want to merge into the study? What is the type of your study?
working file. 22. Will all subjects be included in the
23Data merging in SPSS (3). Click on analysis? Was there any matched (repeated)
Match cases on key variables in sorted measures? How will outliers be defined and
files, Click on Both files provide cases handled? Has the data been cleaned? What
Highlight ID in the excluded variables is our goal and deadline for this goal?
box, then click ? near key Variables. 23. 50.
Spss data entry как делать.ppt
http://900igr.net/kartinka/informatika/spss-data-entry-kak-delat-264195.html
cсылка на страницу

Spss data entry как делать

другие презентации на тему «Spss data entry как делать»

«Data Mining» - Понятие Data Mining. Задачи Data Mining. Сложность разработки и эксплуатации приложения Data Mining. Для карт Кохонена: карты входов, выходов, другие специфические карты. Перспективы технологии Data Mining. Решение задачи прогнозирования. Анализ связей (корреляционный и регрессионный анализ, факторный анализ, дисперсионный анализ).

«Управление базами данными» - Уникальная метка. Sybase. Распределенные СУБД. Язык запросов. Этапы проектирования. Типы данных. Работа с таблицами. Технологии управления базами данными. Мастер анализа таблиц. Структура реляционной таблицы. Диалоговое окно. Этапы проектирования БД. Отношения в БД. Объектно-ориентированные СУБД. DB2.

«Триггеры баз данных» - Понятие триггера. Триггер замещения. Создание замещающих триггеров баз данных. Обновим группу. Замещающий триггер. Имя отдела. Привилегии для создания триггера. Модифицируемые и немодифицируемые представления. Пример замещающего триггера. Типы триггеров. Создание замещающих триггеров. Представления, которые содержат соединения.

«Резервное копирование базы данных» - Тень создаётся в реальном времени и может находиться на другом компьютере. © Copyright 2007 Рудюк Сергей Анатольевич. Простое копирование базы данных. Файлы бекапов получаются не большого размера и хорошо архивируются. Вызываем команду сохранения копии базы данных. Копировать базу данных рекомендуется при всех отключенных пользователях.

«Хранимые процедуры» - Типы триггеров. Примеры использования. Сервер. Триггеры. Понятие хранимых процедур. Реализация триггеров. Системные хранимые процедуры. Триггер. Хранимые процедуры. Создание, изменение и удаление хранимых процедур.

«Язык запросов SQL» - Базы данных. Примеры использования GROUP BY. Операции реляционной алгебры. Операция объединения. Пример декартова произведения реальных таблиц. Бинарные операции реляционной алгебры. Агрегирующие функции. Общий алгоритм выполнения операции SELECT. Использование GROUP BY. Разность отношений. Пересечение отношений.

Работа с базами данных

11 презентаций о работе с базами данных
Урок

Информатика

130 тем
Картинки