Скачать
презентацию
<<  Дизъюнкция Логическое следование  >>
Логическое следование

Логические операции. Импликация (от лат. implication – тесно связывать) - логическое следование. Импликация двух логических переменных ложна тогда и только тогда, когда из истинного основания следует ложное следствие. Обозначается А В, где А–условие В - следствие. Читается Если А, то В; Когда А, тогда В.

Картинка 28 из презентации «Алгебра логики» к урокам алгебры на тему «Алгебра логики»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока алгебры, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Алгебра логики.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 522 КБ.

Скачать презентацию

Алгебра логики

краткое содержание других презентаций об алгебре логики

«Булевы функции» - Булевы функции одной переменной. Принцип двойственности. Формула содержит функции. Функции равны. Самодвойственные булевы функции. Построить таблицу истинности. Булевы функции и алгебра логики. Булевы переменные и функции. Правило получения двойственных формул. Булевы функции. Найти функцию. Булевы функции двух переменных.

«Примеры логических функций» - Определение. Определите значение формулы, упростив и построив таблицу истинности. Даны простые высказывания. Заполните таблицу истинности. Определить истинность формулы. В нарушении правил обмена валюты подозреваются четыре банка. Банк B нарушил правила обмена валюты. Логические функции. Определите, кто из подозреваемых участвовал в преступлении.

«Функции алгебры логики» - Необходимо условиться об алфавите. Вычислительная сложность. Булеву функцию можно выразить формулой над множеством операций. Правила поглощения. Табличное задание функций. Класс функций, сохраняющих 0. Функция f является двойственной. Представление. Соотношения, связанные с “навешиванием отрицания”.

«Алгебра логики» - Импликация. Конъюнкция. Упражнения. Металлы. Число. Город Москва. Постройте отрицания. Высказывание. Объем понятия. Предложения не являются высказываниями. Алгебра логики. Эквивалентность. Понятие. Суждения. Появление математической, или символической, логики. Этапы развития логики. Логические переменные.

«История алгебры логики» - Умозаключение. Аристотель. История науки алгебры логики. Логика– это наука о формах и способах мышления. Джордж Буль. Булева алгебра. Содержание. Понятие. Определение формы. Высказывание – это форма мышления. Основной Закон Буля. Формы мышления. Вильгельм Лейбниц (1646-1716). Вопросы.

«Логическое умножение, сложение и отрицание» - Составное высказывание на естественном языке. Высказывание. Результатом операции логического отрицания является «истина». Компьютерный практикум. Результатом операции логического сложения является «ложь». Простые высказывания в алгебре логики. Истина. Логическое отрицание (инверсия). Логическое сложение (дизъюнкция).

Всего в теме «Алгебра логики» 19 презентаций
Урок

Алгебра

34 темы
Картинка 28: Логическое следование | Презентация: Алгебра логики | Тема: Алгебра логики | Урок: Алгебра