Скачать
презентацию
<<  7. Вычисления пределов 7. Вычисления пределов  >>
7. Вычисления пределов

7. Вычисления пределов. 1. (x2 – 7x + 4) = 32 – 7·3 + 4 = - 8. Решение. Для нахождения предела непосредственного нахождения заменим пределы функции в точке. 2. . Решение. Здесь пределы числителя и знаменателя при x равным нулю. Умножим числитель и знаменатель на выражение ,сопряженное числителю, получим = = = = Следовательно, =. =. =. =.

Картинка 56 из презентации «Предел» к урокам алгебры на тему «Последовательность»

Размеры: 19 х 43 пикселей, формат: png. Чтобы бесплатно скачать картинку для урока алгебры, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Предел.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 1659 КБ.

Скачать презентацию

Последовательность

краткое содержание других презентаций о последовательности

«Задачи на проценты» - Обобщение знаний учеников по вопросам нахождения процентов от числа и числа по процентам. Установка связи теории и практики через специальный подбор задач. Какому количеству % соответствует число 210? Проценты. Задачи на проценты. Определите расстояние между пунктами А и В. Запишите в обычных и десятичных дробях: 12%; 135%.

«Корни квадратного уравнения» - Квадратные уравнения в Древнем Вавилоне. Несмотря на высокий уровень развития алгебры в Вавилонии, в клинописных текстах отсутствуют понятие отрицательного числа. Определение квадратного уравнения. Угадываем корни. Алгоритм решения квадратного уравнения. Теорема Виета. Правило решения уравнений, изложенное в вавилонских текстах, совпадает с современным.

«Решение уравнений с модулем» - Красивейшие уравнения. Ознакомление учащихся с нестандартными приемами решения уравнений, содержащих модули. Создание комфортного темпа работы для каждого ученика. Использование понятия расстояния. Решение уравнений с модулем по заданному алгоритму. Закрепление навыков решения уравнений. Закрепление решения уравнений, содержащих несколько модулей.

«Формулы приведения» - Если угол откладывают от оси оy, то наименование функции меняется на сходное. Упростите выражение. Формулы приведения - это формулы, позволяющие выражать значения тригонометрических функций любого угла через функции угла первой четверти. Правило 1. Правило 2. Знак в правой части формулы определяется по знаку функции в левой части.

«Своства модуля» - Получим совокупность систем. Геометрический смысл модуля. Совокупность систем. Уравнения, приводимые к уравнениям, содержащим модуль. Решите уравнения. Метод интервалов. Замена модуля. Логарифмическое уравнение. Определение модуля. Устная работа. Уравнения общего вида. Уравнения, содержащие несколько модулей.

«Системы счисления» - Десятичная система счисления. Позиция цифры в числе называется ее разрядом, а количество цифр в числе его разрядностью. Перевод из двоичной системы счисления в восьмеричную и шестнадцатеричную. Восьмеричная система счисления. Сложение в двоичной системе счисления. Системы счисления делятся на позиционные и непозиционные.

Всего в теме «Последовательность» 16 презентаций
Урок

Алгебра

34 темы
Картинка 56: 7. Вычисления пределов | Презентация: Предел | Тема: Последовательность | Урок: Алгебра