Задания на формулы сокращённого умножения |
Действия с многочленами
Скачать презентацию |
||
<< Разность квадратов чисел | Урок Формулы сокращённого умножения >> |
Автор: Юля. Чтобы познакомиться с картинкой полного размера, нажмите на её эскиз. Чтобы можно было использовать все картинки для урока алгебры, скачайте бесплатно презентацию «Задания на формулы сокращённого умножения.pptx» со всеми картинками в zip-архиве размером 124 КБ.
Скачать презентациюСл | Текст | Сл | Текст |
1 | Урок закрепление по теме: «Формулы Сокращенного умножения». | 7 | Преобразуйте выражение в многочлен: (1 + х)(1 – х)(1 + х2). |
2 | Устная работа. Представьте в виде многочлена. 1)(m-1)*(m+1) | (А – 1)(1 +а)(а2 +1). (m + n)(n – m)(m2 + n2). (3 – p)(р2 + 9)(р | |
= 2)(3+x)*(x-3) = 3)(m-a)*(m+a) = 4) (2x+3)*(2x-3) = 5) | + 3). (Х + 2)(4 – х2)(х – 2). (5 + m)(25 – m2)(5 – m). 4(1 – а)2 | ||
(3m-4)*(4+3m) = 6) (1-4ab)*(1+4ab) = 7) (5a+4b)*(5a-4b) = 8) | + 3(а + 1)2. 3(m – 2)2 + 5(m + 1)2. 2(х - 1)2 – 3(х + 1)2. | ||
(10abc+7)*(7-10abc) =. m2-1. x2-9. m2-a2. 4x2-9. 9m2-16. | 8 | Проверка. 1 – x4. a4 – 1. n4 – m4. 81 – p4. -x4 - 16. 625 – | |
1-16a2b2. 25a2-16b2. 49-100a2b2c2. | 50m + m4. 7a2 – 2a + 7. 18m2 – 2m + 17. -x2 – 10x – 1. | ||
3 | Разложить на множители. 1) a2- m2 = 2) 9 - x2 = 3) 1 - y2 = | 9 | Применение формул. Решить уравнение (х - 3)2-х2=7-5х х2-6х+9 |
4) 16 - m2 = 5) 9x2- 4 = 6) m2 n2 – 1 = 7) 0,49 - 4x2 = 8) 100 - | - х2+5х=7 -х =7-9 -х = -2 х = 2. Упростить выражение | ||
y2 =. (a – m)(a + m). (3 – x)(3 + x). (1 – y)(1 + y). (4 – m)(4 | (у+3)2+(3у-1) (3у+1) = = у2+6у+9+9у2-1= = 10у2+6у+8. | ||
+ m). (3x – 2)(3x + 2). (mn – 1)(mn + 1). (0,7 – 2x)(0,7 + 2x). | 10 | Вычислите 1192-1092 = = (119-109)(119+109) = =10*228 =2280. | |
(10 – y)(10 + y). | Вычислите 2012 = (200+1)2 = = 2002+2*200*1+12 = = 40000+400+1 = | ||
4 | Возведите в степень. 1) (a+x)2 = 2) (x-y)2 = 3) (5a-x)2 = 4) | 40401. | |
(m+3n)2 = 5) (3a+2x)2 = 6) (10y-а)2 =. a2+2ax+x2. x2-2yx+y2. | 11 | Самостоятельная работа. 2вариант 1) Разложить на множители: | |
25a2-10ax+x2. m2+6mn+9n2. 9a2+12ax+4x2. 100y2-20ya+a2. | а) х2 – 4 a2 б) х3 + 2х2 + х 2) Решить уравнение: 400k2 – 4 = 0. | ||
5 | Работа с формулами (a ± b)2=a2±2ab+b2. Заполнить свободные | 1 вариант 1) Разложить на множители: а) 225b 2 – 121с2 б) 5а2 + | |
клеточки. А) (m + ?)2 = m2 + 20nm + ?2 b) (3k - ?)2 = ?2 - ? + | 10аb + 5 b 2 2) Решить уравнение: 9х2 – 4 = 0. | ||
16 c) 25 + ? + n2 = (5+?2) d) 9 - ? + ?2 = (? - 2p)2. | 12 | 1 вариант 1. А) (15b – 11c)(15b + 11c) б) 5(a + b)2 2. X1 = | |
(m+10n)2=m2+20mn+100n (3k-4)2=9k2-24k+16 25+10n+n2=(5+n2) | x2 = -. 2 вариант 1. А) (x – 2a)(x + 2a) б) x(x + 1)2 2. X1 = | ||
(9-12p+4p2)=(3-2p)2. | 0,1 x2 = - 0,1. | ||
6 | Выбери верный ответ А Б В 1. (с+11)2 С2+11С+121 С2-22С+121 | 13 | Подведение итогов урока. Сформулируйте формулы сокращенного |
С2+22С+121 2. (7у+6)2 49у2+42у+36 49у2+84у+36 49у2-84у+36 3. | умножения. Для чего мы сегодня применяли формулы сокращенного | ||
(9-8у)2 81-144у+64у2 81-72у+64у2 81+144у+64у2 4. (2х-3у)2 | умножения? (для упрощения выражений). Для чего еще можно | ||
4х2-12ху+9у2 4х-6ху+9у2 4х - 6ху + 9у2. Ответы: 1-В ; 2-Б ; 3-А; | применять формулы сокращенного умножения? (Для разложения | ||
4-А. | многочленов на множители). | ||
«Задания на формулы сокращённого умножения» | Задания на формулы сокращённого умножения.pptx |
«Урок Формулы сокращённого умножения» - Тема урока: ФОРМУЛЫ СОКРАЩЁННОГО УМНОЖЕНИЯ. Цель урока: Повторить и обобщить практические навыки и умения по теме «Формулы сокращённого умножения». Представить в виде многочлена: (a+c)2 (x-2b)2 (3a-1)2 (2a+3b)2 (a-3)(a+3) (7+n)(n-7) (a-m)(a2+am+m2) (2+c)(4-2c+c2). Задача: Стороны первого квадрата на 1 см больше сторон второго квадрата, а площадь первого квадрата на 9см2 больше площади второго квадрата.
«Преобразование целого выражения в многочлен» - Ввести понятие целого выражения. Развивать вычислительные навыки учащихся. Какие из выражений являются целыми: Упражнять учащихся в приведении подобных слагаемых. Многочлены и, в частности, одночлены являются целыми выражениями. Любое целое выражение можно представить в виде многочлена. Цели урока: Преобразование целых выражений.
«Бином Ньютона» - Степени суммы двух чисел: Треугольник Паскаля: «Би»-удвоение, раздвоение … «Ном»(фран. nombre) –номер, нумерация. «Бином» -»два числа». Бином Ньютона: Правило Паскаля: Биноминальные коэффициенты: Бином Ньютона.
«Задания на формулы сокращённого умножения» - Преобразуйте выражение в многочлен. Самостоятельная работа. Представьте в виде многочлена. Возведите в степень. Устная работа. Сформулируйте формулы сокращенного умножения. Заполнить свободные клеточки. Разложить на множители. Применение формул.
«Разность квадратов чисел» - Формула (а+b)(a-b)=a2-b2. Выполните умножение. Формула сокращенного умножения. Геометрический смысл формулы. Формула разности квадратов. Влияет ли порядок записи скобок на результат. Работа с таблицей. Важен ли порядок записи. Разность квадратов. Произведение разности двух выражений и их суммы. Возведите в квадрат.
«Сложение и вычитание многочленов» - Ответы парных заданий. Пример, записанный на доске: Работа по карточкам. Обобщение материала по теме: Назовите коэффициенты одночленов. «Брейн Ринг». Сколько рыб поймал рыбак? Решите пример на сложение многочленов: Сложение и вычитание многочленов. Решите пример на вычитание многочленов: Таблица перевода набранных баллов в оценки.