Умножение Скачать
презентацию
<<  Конкретный смысл умножения Умножение на двузначное число  >>
Выработка вычислительных навыков
Выработка вычислительных навыков
Выработка вычислительных навыков
Выработка вычислительных навыков
Выработка вычислительных навыков
Выработка вычислительных навыков
Замена нескольких слагаемых их суммой: а + в + с = а + (в + с)
Замена нескольких слагаемых их суммой: а + в + с = а + (в + с)
Замена нескольких слагаемых их суммой: а + в + с = а + (в + с)
Замена нескольких слагаемых их суммой: а + в + с = а + (в + с)
49 996 + 5 063 = (4 996 + 4) + + (5 063 – 4) = 5 000 + 5 059 = 10 059
49 996 + 5 063 = (4 996 + 4) + + (5 063 – 4) = 5 000 + 5 059 = 10 059
49 996 + 5 063 = (4 996 + 4) + + (5 063 – 4) = 5 000 + 5 059 = 10 059
49 996 + 5 063 = (4 996 + 4) + + (5 063 – 4) = 5 000 + 5 059 = 10 059
2. Округление уменьшаемого или вычитаемого (если уменьшаемое и
2. Округление уменьшаемого или вычитаемого (если уменьшаемое и
1.Умножение на 5; 50; 500
1.Умножение на 5; 50; 500
2. Умножение на 25; 250; 25 000
2. Умножение на 25; 250; 25 000
4. Деление на 25,250
4. Деление на 25,250
4. Деление на 25,250
4. Деление на 25,250
(10 + 3)
(10 + 3)
(10 + 3)
(10 + 3)
Счётчик
Счётчик
Кто первый
Кто первый
Кто первый
Кто первый
Круговые примеры
Круговые примеры
Круговые примеры
Круговые примеры
0 ? а = а; 0
0 ? а = а; 0
А) 5,302 – 8,2 = 7,102 б) 5,302 – 8,2 = - 2,898 в) 1,536 – 4,2 = 1,494
А) 5,302 – 8,2 = 7,102 б) 5,302 – 8,2 = - 2,898 в) 1,536 – 4,2 = 1,494
А) 5,302 – 8,2 = 7,102 б) 5,302 – 8,2 = - 2,898 в) 1,536 – 4,2 = 1,494
А) 5,302 – 8,2 = 7,102 б) 5,302 – 8,2 = - 2,898 в) 1,536 – 4,2 = 1,494
-9 - х = 4; х = 4 + (-9); х = - 5
-9 - х = 4; х = 4 + (-9); х = - 5
-9 - х = 4; х = 4 + (-9); х = - 5
-9 - х = 4; х = 4 + (-9); х = - 5
Некоторые приёмы быстрого устного счёта
Некоторые приёмы быстрого устного счёта
Умножим 14 на 12
Умножим 14 на 12
Интересны частные случаи умножения таких чисел
Интересны частные случаи умножения таких чисел
Умножение двухзначного числа на 11
Умножение двухзначного числа на 11
Умножение трёхзначного числа на 101
Умножение трёхзначного числа на 101
Возведение в квадрат двухзначных чисел, оканчивающихся цифрой 5
Возведение в квадрат двухзначных чисел, оканчивающихся цифрой 5
Возведение в квадрат чисел, оканчивающихся на 25
Возведение в квадрат чисел, оканчивающихся на 25
Возведение в квадрат чисел с помощью формул сокращенного умножения
Возведение в квадрат чисел с помощью формул сокращенного умножения
Спасибо за внимание
Спасибо за внимание
Спасибо за внимание
Спасибо за внимание
Спасибо за внимание
Спасибо за внимание
Картинки из презентации «Произведение чисел это умножение» к уроку математики на тему «Умножение»

Автор: USER. Чтобы познакомиться с картинкой полного размера, нажмите на её эскиз. Чтобы можно было использовать все картинки для урока математики, скачайте бесплатно презентацию «Произведение чисел это умножение.ppt» со всеми картинками в zip-архиве размером 376 КБ.

Скачать презентацию

Произведение чисел это умножение

содержание презентации «Произведение чисел это умножение.ppt»
Сл Текст Сл Текст
1Выработка вычислительных навыков. Учитель математики МОУ 15Некоторые приёмы быстрого устного счёта. Умножение чисел от
«СОШ№ 8» Швецова Елена Владимировна. 10 до 20 Приём: количество единиц в числах назовём
2Замена нескольких слагаемых их суммой: а + в + с = а + (в + «дополнениями». Особенность данного способа умножения
с) Перестановка слагаемых: а + в + с = (а + с) + в Замена заключается в том, что сумма сомножителя и дополнения другого
нескольких множителей их произведением: а?в?с?д = (ав) ? (сд) сомножителя и сумма второго сомножителя и дополнения первого
Перестановка множителей: а?в?с ? д ? е = (ад) ? (ве) ?с равны. Эта сумма равна числу десятков искомого произведения.
Умножение произведения на число: (авс) ? д = (ад) ? в ? с = (вд) Затем, умножая единицы сомножителей, и складывая полученные
? а ? с = (сд) ? ав. Применение распределительного закона результаты, получим произведение данных чисел. То есть, к одному
умножения: (а+в) ? с = ас + вс; ас + вс = (а+в) ? с. из чисел надо прибавить количество единиц другого, умножить на
349 996 + 5 063 = (4 996 + 4) + + (5 063 – 4) = 5 000 + 5 059 10 и прибавить произведение единиц чисел.
= 10 059. 13,98 + 20,6 = (13,98 + 0,02) + (20,6 -0,02) = 14 + 16Умножим 14 на 12. Запишем умножаемые числа в строчку 4 2 14
20,58 = 34,58. 1. Округление слагаемых (если 1 из слагаемых ?12 = 168 Число 14 больше 10 на 4, а число 12 больше 10 на 2.
увеличить/уменьшить на некоторое число, а другое слагаемое Числа 4 и 2 – дополнения. Их можно записать над умножаемыми
уменьшить/увеличить на это же число, то сумма не изменится). числами. 14 + 2 = 16 и 12 + 4 = 16 Эта сумма равна числу
42. Округление уменьшаемого или вычитаемого (если уменьшаемое десятков искомого произведения. Умножив 16 на 10 или просто
и вычитаемое увеличить/уменьшить на одно и тоже число, то приписав нуль, получим 160 единиц. Затем умножим единицы
разность не изменится). 492 – 89 = (492 + 11) – (89 + 11) = 503 сомножителей, т.е. 4 и 2 и получим число единиц, равное 8.
– 100 = 403 7,91 – 3,53 = (7,91 + 0,09) – (3,53 + 0,09) = 8 – Теперь остается сложить полученные результаты: 160 + 8 =168.
3,62 = 4,38 (7,91 + 0,47) – (3,53 + 0,47) = 8,38 – 4 = 4,38 18 ? 17Интересны частные случаи умножения таких чисел. К частным
- 4 ? = (18? + ?) - (4 ? + ?) = 18? - 5 = 13?. случаям относятся умножения чисел, у которых сумма единиц равна
51.Умножение на 5; 50; 500. А ? 5 = (а ? 10) : 2 50 100 500 10. К таким относятся следующие пары чисел: 11 и 19; 12 и 18; 13
1000 65 ? 5 = (65 ? 10) : 2 = 650 : 2 = 325 58 ? 50 = (58:2) ? и 17; 14 и 16; 15 и 15 3) Умножим 14 на 16 - Цифру десятков
100 = 29 ? 100 = 2 900 706 ? 500 = (706 : 2) ? 1 000 = 353 ? 1 одного из сомножителей увеличим на 1. 1 ? ( 1 + 1) = 2 это число
000 = 353 000. сотен искомого произведения. - Умножим единицы сомножителей,
62. Умножение на 25; 250; 25 000. 3. Деление на 5; 50; 500. а т.е. 4 и 6, 4 ? 6 = 24 - Припишем к первому результату второй,
: 5(50;500) = а ? 2 :(10;100;1000.) 4,8 : 5 = (4,8 ? 2) : 10 = получим 224.
9,6 :10 = 0,96. А ? 25(250;2500)= а ? 100(1000;10000) : 4 15? 18Умножение двухзначного числа на 11. Приём: следует
250 = (15 ? 1 000): 4=15 000 :4 =1 200. «раздвинуть» цифры числа, умножаемого на 11, и в образовавшийся
74. Деление на 25,250. А: 25(250 ) = а ? 4 : 100(1000) 54 : промежуток вписать сумму этих цифр, причем если эта сумма больше
25 = (54 ? 4) : 100 = 216 : 100 = 2,16. 9, то, как при обычном сложении, следует единицу перенести в
8(10 + 3) ? 5 205 ? 5 (а – 8) ? 3 (7 + 6) ? 3 104 ? 4 (100 – старший разряд. 34 * 11 = 374, так как 3+4 =7, семёрку помещаем
4) ? 5 (х + 8) ? 8 95 ? 7+ 5 ? 7 ( 36 примеров). между тройкой и четвёркой 68 * 11 =748, так как 6+8 = 14,
9Счётчик. Выбирается «счётчик», которому учащиеся предлагают четвёрку помещаем между семёркой (шестёрка плюс перенесённая
примеры для устного счёта до тех пор, пока он не собьётся; затем единица ) и восьмёркой.
его сменял тот, кто предложил последний пример, и игра 19Умножение трёхзначного числа на 101. Приём: увеличиваем
продолжалась. Побеждал тот, кто решил наибольшее число примеров, первый множитель на число его сотен и приписываем к нему справа
за определенный отрезок времени. две последние цифры первого множителя 125 * 101 = 12625 ( 125
10Кто первый? Предлагалось определить значение переменных +1= 126 , приписываем 12625) 348 * 101 = 35148 ( 348 + 3 = 351,
величин: А равно сумме В и К; К в три раза меньше В; В равно приписываем 35148).
сумме М и С; М равно разности Н и Р; Н в три раза больше Ф; Ф 20Возведение в квадрат двухзначных чисел, оканчивающихся
есть сумма Р и С; С в два раза больше Р; Р в 4 раза меньше 36. цифрой 5. Приём: умножьте цифру десятков на следующую за ней
11Круговые примеры. 0,8 + 1,3 = а -а ? ( -3,2) – (- 2,68) = в цифру, а 5 возвести в квадрат и приписать результат 25 после
в + 4,55 : (-0,5) = с с – 9 ? 0 ,9 + 0,2 = д д : 2,5 – 13,66= е. полученного произведения. 352 = 1225( так как 3* 4 = 12) 852
120 ? а = а; 0 ? = а; а – 0 = 0 – а = а; а : 1 = 1 : а = а. =7225 (так как 8 * 9 = 72).
1)вместо * поставьте знак < , > или = так , чтобы 21Возведение в квадрат чисел, оканчивающихся на 25. Приём:
получилось истинное высказывание: а) 1,5 + 0 * 1,5 ? 0 б) 0 – 2 обозначьте А – часть числа слева от 25; вычислите по формуле 2
* 0 : 2 2) вместо * поставьте знак + или ? так, чтобы получилось (А+ А : 2 )* 10 000 + 625 13252= (132 + 13:2) * 10 000 + 625 =
истинное высказывание: 1 * 1 = 2 1 * 1 = 1 3) поставь число: 0 + 175,5 * 10 000 + 625 = 1755625 9252 =(92 +9:2)* 10 000 + 625 =
* = -2; 0 - * = 2; 1? * = - 4 ; 1 : * = - ? 85,5* 10 000 + 625 =855625.
13А) 5,302 – 8,2 = 7,102 б) 5,302 – 8,2 = - 2,898 в) 1,536 – 22Возведение в квадрат чисел с помощью формул сокращенного
4,2 = 1,494 г) 1,536 – 4,2 = - 2,664. умножения. Приём: найдите, на сколько данное число больше
14-9 - х = 4; х = 4 + (-9); х = - 5. 1) Найдите результат в (меньше) «круглого» числа, квадрат которого легко найти;
случаях б) и в) и объясните, как из равенства а) получаются представьте число в виде суммы (разности); раскройте по формуле
равенства б) и в). а) -6 – (-8) = 2 б) 2 + (-8) = в) -6 – 2 = 2) квадрата суммы (разности) (а + b)2 = a2 + 2* a*b + b2 392 = ( 40
Используя те же самые числа, что и в равенстве -2 – (-3) = 1, – 1 )2= 402 – 2* 40* 1 + 12 = 1600 – 80 + 1 = 1521, 532 = (50 +
составьте одно задание на сложение, а 2-е на вычитание 3) 3)2= 502 + 2*50*3 + 32 = 2500 +300 +9 = 2809.
Используя числа -4; 3; -7 составьте 2 задания на вычитание и 1 23Спасибо за внимание!
на сложение.
«Произведение чисел это умножение» | Произведение чисел это умножение.ppt
http://900igr.net/kartinki/matematika/Proizvedenie-chisel-eto-umnozhenie/Proizvedenie-chisel-eto-umnozhenie.html
cсылка на страницу

Умножение

другие презентации об умножении

«Умножение урок» - - Ребята попали в сказочное царство. учебник «Математика» под ред. 2*6. 3. Повторение. Сегодня мы с вами закрепим знание уже изученной таблицы умножения. 8*4. Если мы справимся со всеми заданиями, то победим Кащея и спасем бедняжку. – Жили-были обычные дети Витя и Маша. Оборудование: Цель:

«Произведение чисел это умножение» - Умножим 14 на 12. Круговые примеры. Умножение чисел от 10 до 20 Приём: количество единиц в числах назовём «дополнениями». Некоторые приёмы быстрого устного счёта. Счётчик. 0 ? а = а; 0 ? = а; а – 0 = 0 – а = а; а : 1 = 1 : а = а. -9 - х = 4; х = 4 + (-9); х = - 5. Применение распределительного закона умножения: (а+в) ? с = ас + вс; ас + вс = (а+в) ? с.

«Задачи на умножение» - Аппаратура телефонной сети, обслуживающей 300000 абонентов, рассчитана на 6 цифр в номере. Решение: 4*8=32. Дополнительно. Выводы по задаче. П. 9.2. 10. Вычислите. Можно ли подобные комбинаторные задачи решать по правилу умножения? Задача 5. 14. Молодцы! Кто из ребят прав? Задача. Как? Итоги урока. 9*10*10*10*10*10=900000 Нет не хватит!

«Умножение на двузначное число» - 59 х 40 59 х 7 2360 + 413. Работа над новым материалом. Ход урока. С. 38 № 203. Пешком отправился в Москву, стал поэтом, химиком, физиком, астрономом. Воспитывать аккуратность, чувство товарищества. Познакомить с приемом письменного умножения на двузначные числа. Закрепление изученного на уроке. Устный счет.

«Смысл умножения» - Например:9+9+9+9+9=9*5. Из курса математики нам известно, что если а и b целые неотрицательные числа, то: 1)а* b=a +a +a…+a?при b<1; 2)a*1=a, при b=1; 3)a*0=0,при b=0; В качестве оснований для разбиения учащиеся могут выбрать: а) количество слагаемых б) одинаковые или неодинаковые слагаемые. Б)на выбор рисунка, соответствующего данной записи 2 * 6.

Урок

Математика

67 тем
Картинки
Презентация: Произведение чисел это умножение | Тема: Умножение | Урок: Математика | Вид: Картинки
900igr.net > Презентации по математике > Умножение > Произведение чисел это умножение.ppt