<<  Функциональное и логическое программирование Функциональное и логическое программирование (флп)  >>
Предмет изучения

Предмет изучения. ФУНКЦИОНАЛЬНОЕ ПРОГРАММИРОВАНИЕ язык программирования Lisp (LISt Processing) ЛОГИЧЕСКОЕ ПРОГРАММИРОВАНИЕ язык программирования Prolog (PROgramming in LOGic).

Слайд 2 из презентации «Функциональное и логическое программирование»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Функциональное и логическое программирование.ppt» можно в zip-архиве размером 1978 КБ.

Алгебра логики

краткое содержание других презентаций об алгебре логики

«Алгебра высказываний» - Силлогизм - рассуждение, в котором из заданных двух суждений выводится третье. Если А и В – формулы, то «не А», «А и В», «А или В», «если А, то В», «тогда и только тогда А, когда В» - формулы. Джордж Буль (1815-1864, анл.) - основоположник мат. логики. АРИСТОТЕЛЬ (384-322 гг. до н.э.) - ОСНОВОПОЛОЖНИК ЛОГИКИ.

«Понятие логического высказывания» - Найти множество значений. В основе современной логики лежат учения. Логические операции – логические действия. Два простых высказывания. Логическая переменная. Как человек мыслит. Основы логики. Записать в виде логического выражения следующее высказывание. Умозаключение. Запишите следующие высказывания в виде логических выражений.

«Логические таблицы истинности» - Для составления таблицы необходимо: Выяснить количество столбцов = количество переменных + количество логических операций. Заполнить таблицу истинности по столбцам. Таблицы истинности. Установить последовательность выполнения логических операций. Таблица истинности сложного логического выражения. Как правильно составить и использовать?

«Алгебра логики» - Суждения. Значение логической переменной. Конъюнкция. Упражнения. Высказывание. Число. Логические операции. Логическое умножение. Логическое следование. Логические переменные. Инверсия. Предложения не являются высказываниями. Вопросительные и восклицательные предложения. Импликация. Логическое равенство.

«Таблица истинности» - Пример 4. Для какого из указанных значений X истинно высказывание ¬ ((X>2) ? (X>3))? 1)x=1 2) x= 2 3) x= 3 4) x= 4 Решение: ¬ ((X>2) ? (X>3)) = 1 (X>2) ? (X>3) = 0. Решение: (50<X2)?(50>(X+1)2) = 1 Из таблицы истинности импликации (X2>50) = 1 (X+1)2 < 50 = 1 x<-?50 или x>?50 -?50< (x+1) <?50 (-?; -7) U(7;+?) [-8; 6) [-8; -7) (X2>50) = 0 (X+1)2 < 50 = 1 [-7; 7] [-8; 6) [-7; 6) (X2>50) = 0 (X+1)2 < 50 = 0.

«Логическое умножение, сложение и отрицание» - Простые высказывания в алгебре логики. Логическое умножение, сложение и отрицание. Логическое сложение (дизъюнкция). Логическое отрицание (инверсия). Составное высказывание на естественном языке. Результатом операции логического отрицания является «истина». Истина. Какие значения даёт логическая операция.

Всего в теме «Алгебра логики» 19 презентаций
Урок

Алгебра

35 тем