Алгебра
<<  Ученых занимающихся алгеброй Современные проблемы информатики  >>
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Понятие функции одно из самых сложных в школьном курсе алгебры
Понятие функции одно из самых сложных в школьном курсе алгебры
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Из истории развития понятия функции
Пропедевтика понятия функции, 6 класс
Пропедевтика понятия функции, 6 класс
Пропедевтика понятия функции, 6 класс
Пропедевтика понятия функции, 6 класс
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Длина окружности
Длина окружности
Графики
Графики
Графики
Графики
Рассмотрим равенство y = 2x
Рассмотрим равенство y = 2x
1386
1386
Введение понятия функции 7 класс
Введение понятия функции 7 класс
Введение понятия функции 7 класс
Введение понятия функции 7 класс
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Выводы из рассмотренных примеров
Выводы из рассмотренных примеров
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Система заданий по теме «Функция»
Способы задания функции
Способы задания функции
Способы задания функции
Способы задания функции
813*
813*
8 класс
8 класс
Графический способ решения уравнений
Графический способ решения уравнений
Пример
Пример
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Пример
Пример
9 класс
9 класс
Пример
Пример
Преобразование графиков функций
Преобразование графиков функций
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Как построить графики функций y = f (x) + b и y = f (x + a), если
Как построить графики функций y = f (x) + b и y = f (x + a), если
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Решение квадратичных неравенств
Решение квадратичных неравенств
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл
Развитие понятия функции в УМК «Алгебра 7-9 кл

Презентация: «Графики зависимостей величин 6 класс». Автор: Irina. Файл: «Графики зависимостей величин 6 класс.ppt». Размер zip-архива: 1621 КБ.

Графики зависимостей величин 6 класс

содержание презентации «Графики зависимостей величин 6 класс.ppt»
СлайдТекст
1 Развитие понятия функции в УМК «Алгебра 7-9 кл
2 Развитие понятия функции в УМК «Алгебра 7-9 кл

Развитие понятия функции в УМК «Алгебра 7-9 кл

Якир Михаил Семенович, автор УМК «Алгебра» 7-9 кл.

3 Понятие функции одно из самых сложных в школьном курсе алгебры

Понятие функции одно из самых сложных в школьном курсе алгебры

Одночлен многочлен линейное уравнение параллелограмм

4 Из истории развития понятия функции

Из истории развития понятия функции

Изучение зависимостей между переменными величинами. Открытие формул для вычисления площадей и объёмов некоторых фигур. Работы Пьера Ферма и Рене Декарта: исследование значения ординаты в зависимости от значения абсциссы. Работы Исаака Ньютона: величина, изменяющее свое значение с течением времени.

5 Из истории развития понятия функции

Из истории развития понятия функции

4. Термин «функция» ввел Лейбниц. Иоганн Бернулли и Лейбниц под функцией понимали формулу, связывающую одну переменную с другой. 5. Многолетний спор между Эйлером и Д’Аламбером. 6. Определение Лобачевского и Дирихле: переменную величину y называют функцией переменной величины x, если каждому значению величины x ставится в соответствие единственное значение величины y.

6 Из истории развития понятия функции

Из истории развития понятия функции

7. Более современный подход: функция — это правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной.

7 Из истории развития понятия функции

Из истории развития понятия функции

8. Определение на языке теории множеств: пусть X — множество значений независимой переменной, Y — множество значений зависимой переменной; функция — это правило, с помощью которого по каждому значению независимой переменной из множества X можно найти единственное значение зависимой переменной из множества Y. 9. Функция и отображение — это синонимы.

8 Из истории развития понятия функции

Из истории развития понятия функции

10. Взаимно однозначное отображение множества X на множество Y.

9 Из истории развития понятия функции

Из истории развития понятия функции

11. Определение понятия функции без использования понятия «правила»: функция — это множество упорядоченных пар с различными первыми компонентами. {(x; y) | x ? X, y ? Y, y = f (x)}. f = {(x; 2x – 1) | x ? R }.

10 Пропедевтика понятия функции, 6 класс

Пропедевтика понятия функции, 6 класс

Прямая и обратная пропорциональные зависимости

11 Пропедевтика понятия функции, 6 класс

Пропедевтика понятия функции, 6 класс

Две переменные величины называют прямо пропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая увеличивается (уменьшается) во столько же раз. Две переменные величины называют обратно пропорциональными, если при увеличении (уменьшении) одной из этих величин в несколько раз другая уменьшается (увеличивается) во столько же раз.

12 Развитие понятия функции в УМК «Алгебра 7-9 кл
13 Длина окружности

Длина окружности

Длина l окружности зависит от длины её диаметра d, а именно: чем больше диаметр, тем больше длина окружности. Возможно, интуиция вам подскажет, что если диаметр увеличить, например, в 2 раза, то и длина окружности увеличится в 2 раза; если, например, диаметр уменьшить в 5 раз, то же самое произойдет и с длиной окружности.

14 Графики

Графики

График температуры

15 Графики

Графики

График температуры

16 Рассмотрим равенство y = 2x

Рассмотрим равенство y = 2x

Это равенство показывает, как значения переменной y зависят от соответствующих значений переменной x: значение переменной y равно соответствующему значению переменной x, умноженному на 2. Построим график этой зависимости. Для этого составим таблицу соответствующих значений переменных x и y:

17 1386

1386

Мотоциклист выехал из дома и через некоторое время вернулся назад. На рисунке 202 изображен изменения расстояния мотоциклиста от дома в зависимости от времени (график движения мотоциклиста). 1) Какое расстояние проехал мотоциклист за первый час движения? 2) На каком расстоянии от дома мотоциклист остановился для первого отдыха? для второго отдыха? 3) Сколько длился первый отдых? второй отдых? 4) На каком расстоянии от дома был мотоциклист через 5 ч после начала движения? 5) С какой скоростью двигался мотоциклист последние полчаса?

18 Введение понятия функции 7 класс

Введение понятия функции 7 класс

Связи между величинами. Функция

Учитель пишет на доске. При этом меняются длина мелового следа, масса, объём и даже температура кусочка мела. Работает школьная столовая. В течение дня меняются количество посетивших её учеников, расходы электроэнергии и воды, денежная выручка и т. п.

19 Введение понятия функции 7 класс

Введение понятия функции 7 класс

Вообще, в происходящих вокруг нас процессах многие величины меняют свои значения. Понятно, что некоторые из этих величин связаны между собой, т. е. изменение одной величины влечёт за собой изменение другой. Многие науки, такие как физика, химия, биология и другие, исследуют зависимости между величинами. Изучает эти связи и математика, конструируя математические модели реальных процессов.

20 Развитие понятия функции в УМК «Алгебра 7-9 кл
21 Выводы из рассмотренных примеров

Выводы из рассмотренных примеров

Несмотря на существенные различия приведенных трех примеров, им всем присуще следующее: указано правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной. Такое правило называют функцией, а соответствующую зависимость одной переменной от другой — функциональной. Итак, правила, описанные в примерах 1, 2 и 3, являются функциями.

22 Система заданий по теме «Функция»

Система заданий по теме «Функция»

760. В вашем классе была проведена контрольная работа по математике. 1) Каждому ученику поставили в соответствие оценку, которую он получил. 2) Каждой оценке поставили в соответствие ученика, который ее получил. Какое из этих правил является функцией? 761. Рассмотрим правило, согласно которому каждому натуральному числу соответствует противоположное ему число. Является ли такое правило функцией?

23 Система заданий по теме «Функция»

Система заданий по теме «Функция»

762. Каждому неотрицательному числу поставили в соответствие само это число, а каждому отрицательному числу — число, ему противоположное. Является ли такое правило функцией? 769. Каждому числу поставили в соответствие расстояние от точки, изображающей это число на координатной прямой, до начала отсчета. Поясните, почему описанное правило является функцией. Найдите её область определения и область значений. Обозначив эту функцию буквой f, найдите f (2), f (–5), f (0).

24 Система заданий по теме «Функция»

Система заданий по теме «Функция»

770.Рассмотрим правило, по которому каждому однозначному натуральному числу поставили в соответствие последнюю цифру его квадрата. Является ли это правило функцией? В случае утвердительного ответа обозначьте эту функцию буквой g и найдите: 1) область определения и область значений функции; 2) g (7), g (3), g (1), g (9), g (4). 771. Рассмотрим правило, по которому числу 0 ставятся в соответствие все четные числа, а числу 1 — все нечетные числа. Является ли это правило функцией?

25 Система заданий по теме «Функция»

Система заданий по теме «Функция»

772. Придумайте функцию f, областью определения которой являются все натуральные числа, а областью значений — три числа: 0, 1, 2. Найдите f (7), f (15), f (101). 773. Рассмотрим правило, по которому каждому натуральному числу поставили в соответствие остаток при делении его на 7. Является ли это правило функцией? В случае утвердительного ответа найдите область определения и область значений этой функции.

26 Способы задания функции

Способы задания функции

797. Каждому натуральному числу, которое больше, чем 10, но меньше, чем 20, поставили в соответствие остаток при делении этого числа на 6. 1) Каким способом задана эта функция? 2) Какова область значений этой функции? 3) Задайте эту функцию таблично. 798. Область определения некоторой функции — однозначные натуральные числа, а значения функции в 2 раза больше соответствующих значений аргумента. 1) Каким способом задана эта функция? 2) Задайте эту функцию формулой и таблично.

27 Способы задания функции

Способы задания функции

799. Задайте формулой функцию, если значения функции: 1) противоположны соответствующим значениям аргумента; 2) равны утроенным соответствующим значениям аргумента; 3) на 4 больше квадратов соответствующих значений аргумента. 800. Задайте формулой функцию, если значения функции: 1) на 3 меньше соответствующих значений аргумента; 2) на 5 больше удвоенного значения соответствующего аргумента.

28 813*

813*

Функция f задана описательно: значение функции равно наибольшему целому числу, которое не превышает соответствующего значения аргумента. Найдите f (3,7), f (0,64), f (2), f (0), f (– 0,35), f (–2,8).

Способы задания функции

29 8 класс

8 класс

Область определения Область значений График Свойство графика

30 Графический способ решения уравнений

Графический способ решения уравнений

Пример. Решите уравнение

31 Пример

Пример

Решите графически уравнение

32 Развитие понятия функции в УМК «Алгебра 7-9 кл
33 Пример

Пример

Решите графически уравнение

34 9 класс

9 класс

Повторение и расширение сведений о функции

Определение функции на языке теории множеств. Свойства функции Нули функции. Промежутки знакопостоянства. Возрастание и убывание функции.

35 Пример

Пример

Докажите, что функция f (x) = убывает на каждом из промежутков (–?; 0) и (0; +?).

36 Преобразование графиков функций

Преобразование графиков функций

Как построить график функции y = kf (x), если известен график функции y = f (x)

37 Развитие понятия функции в УМК «Алгебра 7-9 кл
38 Как построить графики функций y = f (x) + b и y = f (x + a), если

Как построить графики функций y = f (x) + b и y = f (x + a), если

известен график функции y = f (x)

39 Развитие понятия функции в УМК «Алгебра 7-9 кл
40 Развитие понятия функции в УМК «Алгебра 7-9 кл
41 Развитие понятия функции в УМК «Алгебра 7-9 кл
42 Решение квадратичных неравенств

Решение квадратичных неравенств

43 Развитие понятия функции в УМК «Алгебра 7-9 кл
44 Развитие понятия функции в УМК «Алгебра 7-9 кл
45 Развитие понятия функции в УМК «Алгебра 7-9 кл
46 Развитие понятия функции в УМК «Алгебра 7-9 кл
«Графики зависимостей величин 6 класс»
http://900igr.net/prezentacija/algebra/grafiki-zavisimostej-velichin-6-klass-163606.html
cсылка на страницу

Алгебра

17 презентаций об алгебре
Урок

Алгебра

35 тем
Слайды
900igr.net > Презентации по алгебре > Алгебра > Графики зависимостей величин 6 класс