№ | Слайд | Текст |
1 |
 |
Комплексные числаМБОУ СОШ №5 – «Школа здоровья и развития» г. Радужный Учитель математики: Семёнова Елена Юрьевна |
2 |
 |
Из истории комплексных чиселКомплексные числа были введены в математику для того, чтобы сделать возможной операцию извлечения квадратного корня из любого действительного числа. Это, однако, не является достаточным основанием для того, чтобы вводить в математику новые числа. Оказалось, что если производить вычисления по обычным правилам над выражениями, в которых встречаются квадратный корень из отрицательного числа, то можно прийти к результату, уже не содержащему квадратный корень из отрицательного числа. В XVI в. Кардано нашел формулу для решения кубического уравнения. Оказалось, когда кубическое уравнение имеет три действительных корня, в формуле Кардано встречается квадратный корень из отрицательного числа. Впервые, по-видимому, мнимые величины появились в известном труде «Великое искусство, или об алгебраических правилах» Кардано (1545), который счёл их непригодными к употреблению. |
3 |
 |
Из истории комплексных чисел |
4 |
 |
Из истории комплексных чиселОн же высказал в 1751 году мысль об алгебраической замкнутости поля комплексных чисел. К такому же выводу пришел Д’Аламбер (1747), но первое строгое доказательство этого факта принадлежит Гауссу (1799). Гаусс и ввёл в широкое употребление термин «комплексное число» в 1831 г, хотя этот термин ранее использовал в том же смысле французский математик Лазар Карно в 1803 году. Полные гражданские права мнимым числам дал Гаусс, который назвал их комплексными числами, дал геометрическую интерпретацию и доказал основную теорему алгебры, утверждающую, что каждый многочлен имеет хотя бы один действительный корень. Геометрическое истолкование комплексных чисел и действий над ними появилось впервые в работе Весселя (англ.), (1799). Первые шаги в этом направлении были сделаны Валлисом (Англия) в 1685 году. |
5 |
 |
Cодержание |
6 |
 |
N ? Z Q ? R ? C Множества чисел |
7 |
 |
Алгебраические операцииC Действительные числа: +, –, ?, ?, любые длины R Q Рациональные числа: +, –, ?, ? Z N Целые числа: +, –, ? Натуральные числа: +, ? |
8 |
 |
Понятие комплексного числаКомплексные числа C – это пара (a; b) действительных чисел с заданными определенным образом операциями умножения и сложения. Комплексное число z = (a; b) записывают как z = a + bi. i2 = ?1, i – мнимая единица. Число Re z называется действительной частью числа z, а число Im z – мнимой частью числа z. Их обозначают a и b соответственно: a = Re z, b = Im z. Определение: Числа вида a + bi, где a и b – действительные числа, i – мнимая единица, называются комплексными. |
9 |
 |
Понятие комплексного числаМинимальные условия, которым должны удовлетворять комплексные числа: C1) Существует комплексное число, квадрат которого равен (?1). С2) Множество комплексных чисел содержит все действительные числа. С3) Операции сложения, вычитания, умножения и деления комплексных чисел удовлетворяют обычным законам арифметических действий (сочетательному, переместительному, распределительному). I – начальная буква французского слова imaginaire – «мнимый» |
10 |
 |
Действия над комплексными числамиСравнение a + bi = c + di означает, что a = c и b = d (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части) Сложение (a + bi) + (c + di) = (a + c) + (b + d)i Вычитание (a + bi) ? (c + di) = (a ? c) + (b ? d)i Умножение (a + bi) ? (c + di) = ac + bci + adi + bdi2 = (ac ? bd) + (bc + ad)i Деление |
11 |
 |
Сопряженные числа |
12 |
 |
Примеры(a + bi) + (c + di) = (a + c) + (b + d)i Например: 1. (2 + 3i) + (5 + i) = (2 + 5) + (3 + 1)i = 7 + 4i; 2. (– 2 + 3i) + (1 – 8i) = (– 2 + 1) + (3 + (– 8))i = – 1 – 5i; 3. (– 2 + 3i) + (1 – 3i) = (– 2 + 1) + (3 + (– 3))i = – 1 + 0i = – 1. (a + bi) – (c + di) = (a – c) + (b – d)i Например: (5 – 8i) – (2 + 3i) = (3 – 2) + (– 8 – 3)i = 1 – 11i; (3 – 2i) – (1 – 2i) = (3 – 1) + ((– 2) – (– 2))i = 2 + 0i = 2. |
13 |
 |
Примеры(a + bi)(c + di) = (aс + bd) + (ad + bc)i Например: 1. (– 1 + 3i)(2 + 5i) = – 2 – 5i + 6i + 15i2 = – 2 – 5i + 6i – 15 = – 17 + i; 2. (2 + 3i)(2 – 3i) = 4 – 6i + 6i – 9i2 = 4 + 9 = 13. Произведение двух сопряженных чисел – действительное число: (a + bi)(a – bi) = a2 – abi + abi – b2i2 = a2 + b2 Произведение двух чисто мнимых чисел – действительное число: bi ? di = bdi2 = ? bd Например: 1. 5i•3i = 15i2 = ? 15; 2. ? 2i•3i = ? 6i2 = 6. |
14 |
 |
ПримерыДеление комплексного числа a + bi на комплексное число c + di ? 0 определяется как операция обратная умножению и выполняется по формуле: Формула теряет смысл, если c + di = 0, так как тогда c2 + d2 = 0, т. е. деление на нуль и во множестве комплексных чисел исключается. Обычно деление комплексных чисел выполняют путем умножения делимого и делителя на число, сопряженное делителю. Например: |
15 |
 |
Комплексные числа на координатной плоскостиz = a + bi b |z| ? a Im z Re z 0 |
«Комплексные числа» |