Свойства функции
<<  Ортогональные преобразования сигналов в базисе функций Уолша Квадратичная функция, ее свойства и график; парабола, ось симметрии параболы, вершина параболы  >>
Квадратичная функция, её свойства и график МБС(к)ОУ «С(к)ОШ для детей
Квадратичная функция, её свойства и график МБС(к)ОУ «С(к)ОШ для детей
Цели:
Цели:
Повторим изученное
Повторим изученное
Задайте формулой функцию и запишите координаты вершины параболы:
Задайте формулой функцию и запишите координаты вершины параболы:
Задайте формулой функцию и запишите координаты вершины параболы:
Задайте формулой функцию и запишите координаты вершины параболы:
График функции у=а(х+n)2+m может быть получен из графика функции у=ах2
График функции у=а(х+n)2+m может быть получен из графика функции у=ах2
Определение
Определение
График квадратичной функции -Парабола
График квадратичной функции -Парабола
Баллистическое движение БАЛЛИСТИКА (нем
Баллистическое движение БАЛЛИСТИКА (нем
Советские баллистические ракеты Р-21 размещались на подводных лодках и
Советские баллистические ракеты Р-21 размещались на подводных лодках и
БАЛЛИСТИЧЕСКАЯ РАКЕТА, после выключения двигателей совершает полет по
БАЛЛИСТИЧЕСКАЯ РАКЕТА, после выключения двигателей совершает полет по
Движение тела, брошенного под углом к горизонту, происходит по
Движение тела, брошенного под углом к горизонту, происходит по
?Определить координаты вершины параболы
?Определить координаты вершины параболы
Вершина параболы:
Вершина параболы:
Домашнее задание
Домашнее задание

Презентация на тему: «Квадратичная функция 9 класс урок повторения». Автор: Customer. Файл: «Квадратичная функция 9 класс урок повторения.ppt». Размер zip-архива: 386 КБ.

Квадратичная функция 9 класс урок повторения

содержание презентации «Квадратичная функция 9 класс урок повторения.ppt»
СлайдТекст
1 Квадратичная функция, её свойства и график МБС(к)ОУ «С(к)ОШ для детей

Квадратичная функция, её свойства и график МБС(к)ОУ «С(к)ОШ для детей

с ОВЗ №155»г.Перми Алгебра, 9 класс. Тема: Квадратичная функция , ее свойства и график . Урок повторение и закрепление материала. Подготовила: Смирнова Наталья Юрьевна.

2 Цели:

Цели:

Повторить связи между графиками функций вида у=ах2 , у=ах2+m, у=а(х+n)2; обобщить выводы для функции вида у=а(х+n)2+m. Повторить свойства квадратичной функции. Закрепить их знание при построении графиков квадратичной функции. Уметь определять свойства функции по графику.

3 Повторим изученное

Повторим изученное

У

Х

1

-1

1

2

3

-2

4 Задайте формулой функцию и запишите координаты вершины параболы:

Задайте формулой функцию и запишите координаты вершины параболы:

У

5 Задайте формулой функцию и запишите координаты вершины параболы:

Задайте формулой функцию и запишите координаты вершины параболы:

У

6 График функции у=а(х+n)2+m может быть получен из графика функции у=ах2

График функции у=а(х+n)2+m может быть получен из графика функции у=ах2

путем переноса его вдоль оси Оу на m единиц… и вдоль оси Ох на n единиц…

7 Определение

Определение

Функция вида у = ах2+bх+с, где а, b, c – заданные числа, а?0, х – действительная переменная, называется квадратичной функцией. Примеры: 1) у=5х+1 4) у=x3+7x-1 2) у=3х2-1 5) у=4х2 3) у=-2х2+х+3 6) у=-3х2+2х

8 График квадратичной функции -Парабола

График квадратичной функции -Парабола

Парабола (греч. ???????? — приложение) — геометрическое место точек, равноудалённых от данной прямой и данной точки .

9 Баллистическое движение БАЛЛИСТИКА (нем

Баллистическое движение БАЛЛИСТИКА (нем

Ballistik, от греч. ballo — бросаю), наука о движении артиллерийских снарядов, неуправляемых ракет, мин, бомб, пуль при стрельбе (пуске).

10 Советские баллистические ракеты Р-21 размещались на подводных лодках и

Советские баллистические ракеты Р-21 размещались на подводных лодках и

были предназначены для подводного старта. Поступив на вооружение в 1963 году, Р-21 находились на боевом дежурстве около двадцати лет.

11 БАЛЛИСТИЧЕСКАЯ РАКЕТА, после выключения двигателей совершает полет по

БАЛЛИСТИЧЕСКАЯ РАКЕТА, после выключения двигателей совершает полет по

баллистической траектории. Баллистическая траектория, траектория движения свободно брошенного тела под действием только силы тяжести.

12 Движение тела, брошенного под углом к горизонту, происходит по

Движение тела, брошенного под углом к горизонту, происходит по

параболической траектории. В реальных условиях такое движение может быть в значительной степени искажено из-за сопротивления воздуха, которое может во много раз уменьшить дальность полета тела.

13 ?Определить координаты вершины параболы

?Определить координаты вершины параболы

? Нули функции. ? Промежутки, в которых функция возрастает, убывает. ? Промежутки, в которых функция принимает положительные значения, отрицательные значения. ? Каков знак коэффициента a ? ? Как зависит положение ветвей параболы от коэффициента a ?

14 Вершина параболы:

Вершина параболы:

Задание. Найти координаты вершины параболы: 1) у = х 2 -4х-5 2) у=-5х 2+3 Ответ:(2;-9) Ответ:(0;3)

15 Домашнее задание

Домашнее задание

№122 №123

«Квадратичная функция 9 класс урок повторения»
http://900igr.net/prezentacija/algebra/kvadratichnaja-funktsija-9-klass-urok-povtorenija-208268.html
cсылка на страницу

Свойства функции

23 презентации о свойствах функции
Урок

Алгебра

35 тем
Слайды
900igr.net > Презентации по алгебре > Свойства функции > Квадратичная функция 9 класс урок повторения