<<  Последовательное (цепное) расположение материала Виды заключения  >>
Требования к основной части

Требования к основной части. Знание вопроса Сохранять тезис Иметь четкую схему рассказа Создавать ощущение упорядоченного, поступательного движения Помнить, что аксиомы усваиваются хуже, чем теоремы.

Слайд 19 из презентации «Логические основы публичного выступления»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Логические основы публичного выступления.ppt» можно в zip-архиве размером 143 КБ.

Алгебра логики

краткое содержание других презентаций об алгебре логики

«Булевы функции» - Самодвойственные булевы функции. Принцип двойственности. Булевы функции одной переменной. Формула содержит функции. Порядковый номер функции. Задание булевых функций. Булевы функции. Двойственность булевых функций. Функции равны. Булевы функции двух переменных. Идемпотентность конъюнкции и дизъюнкции.

«Правила преобразования логических выражений» - По правилу исключения констант. Законы логики. Правила преобразования. Преобразование логического выражения. Упростить логическое выражение (A & В) v (A & В). (A & В) v (A & В) = А & (B v B) = A & 1 = A. Логические законы и правила преобразования логических выражений. Правила равносильности А v A = А A & A = A Правила исключения констант А v 1 = 1 А v 0 = A А & 1 = A A & 0 = 0.

«Таблица истинности» - Пример 4. Для какого из указанных значений X истинно высказывание ¬ ((X>2) ? (X>3))? 1)x=1 2) x= 2 3) x= 3 4) x= 4 Решение: ¬ ((X>2) ? (X>3)) = 1 (X>2) ? (X>3) = 0 Из таблицы истинности импликации 1 ? 0 = 0 Ответ: 3) x= 3. Решение: (90 < X2) ? (X < (X – 1)) = 1 Из таблицы истинности импликации 1 ? 1 = 1 0 ? 1 = 1 0 ? 0 = 1 X < (X – 1) = 0 для всех X, следовательно (90 < X2) = 0 если 90 =>X2 -?90<=x<=+?90 Ответ: x = 9.

«Логические операции» - Логическое отрицание (инверсия). Исключающее ИЛИ (строгая дизъюнкция). В следующих столбцах – значения истинности последовательно выполняемых операций и окончательного результата. Таблица истинности: Число строк делится на 4 части. Верхняя половина заполняется нулями, нижняя – единицами. 2-й столбец.

«Функции алгебры логики» - Класс всех самодвойственных функций. Замкнутый класс. Джордж Буль. Класс монотонных функций. Константы. «Табличное» задание функции. Функцию алгебры логики можно выразить формулой. Необходимо условиться об алфавите. Суперпозиция функций алгебры логики. Соотношение для двойного отрицания. Класс функций, сохраняющих 0.

«Логические законы» - Закон двойного отрицания. Закон поглощения. Закон исключения констант. Найдите X, если По закону де Моргана. Закон исключения (склеивания). Для логического сложения: Для логического умножения: Построение необходимо начинать с логической операции, которая должна выполняться последней. Закон означает отсутствие показателей степени.

Всего в теме «Алгебра логики» 19 презентаций
Урок

Алгебра

35 тем