<<  Удаление последовательности Последовательности  >>
Заключение

Заключение. Для автоматической генерации чисел используется генератор последовательностей Как объект базы данных, последовательность может использоваться совместно несколькими пользователями Информацию о последовательностях можно получить в таблице USER_SEQUENCES Извлечь следующее свободное число в последовательности можно с помощью ссылки «последовательность.NEXTVAL» Извлечь текущее число в последовательности можно с помощью ссылки «последовательность.CURRVAL».

Слайд 12 из презентации «Последовательности»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Последовательности.ppt» можно в zip-архиве размером 30 КБ.

Последовательность

краткое содержание других презентаций о последовательности

«Предел числовой последовательности» - Рассмотрим последовательность: Числовые последовательности. Пример: 1, 4, 9, 16, …, п2, … - ограничена снизу 1. Перечислением членов последовательности (словесно). Предел частного равен частному пределов: Постоянный множитель можно вынести за знак предела: Величина уn называется общим членом последовательности.

«Предел последовательности чисел» - Последовательность (уn) ограничена снизу. Свойства сходящихся последовательностей. Вычисление пределов числовых последовательностей. Числа Фибоначчи. Понятие предела числовой последовательности геометрически. Последовательность. Способы задания числовой последовательности. Аналитический способ. Рекуррентный способ.

«Последовательность» - Мы получили не что иное, как числа Фибоначчи. Что есть последовательность? Последовательности составляют такие элементы природы, которые можно как то пронумеровать. Между числами Фибоначчи и треугольником Паскаля существует интересная связь. Какая формула называется рекуррентной? Рекуррентное задание последовательности может быть и более сложным.

«Последовательности» - Способы задания числовых последовательностей: - N-ым членом последовательности. Обозначим сумму n первых членов арифметической прогрессии через. Стоит выражение. Конечные: Пример: положительные четные числа: Рассмотрим последовательность: - Вторым членом последовательности и т.Д. Число таких пар равно n.

«Понятие предела функции» - Классификация вещественных функций вещественного аргумента. Символы. Понятие функции. Основные элементарные функции. Предел последовательности. Предел функции f(x). Геометрическая интерпретация предела последовательности. Сравнение б.м. и б.б. функций. Геометрическая интерпретация понятия предела функции.

«Числовые последовательности» - Способы задания. Геометрическая прогрессия. Числовые последовательности. Арифметическая прогрессия. Урок-конференция. «Числовые последовательности».

Всего в теме «Последовательность» 16 презентаций
Урок

Алгебра

35 тем