Без темы <<  Lean Technologies as a basis of effective value chain creation Lecture 8 – Geodatabase  >> Lecture 8 Magnetic Fields Ch Lecture 8 Magnetic Fields Ch \ Lecture 8 Magnetic Fields Ch Lecture 8 Magnetic Fields Ch Lecture 8 Magnetic Fields Ch Magnetic Fields Magnetism’s Sociabilities Compass and Declinometer Permanent Magnets Permanent Magnets (continued) Magnetic field lines do not stop at surface Magnetic field lines Definition of magnetic Field In analogy with the electric force on a point charge, the Use right hand rule to find the direction of F Motion of a point positive charge “ ” in a magnetic field Find the radius r and period of motion for a + charge moving in the Example: If a proton moves in a circle of radius 21 cm perpendicular Use right hand rule to find the direction of F Suppose we have an electron Example of the force on a fast moving proton due to the earth’s Force on a current-carrying wire in a uniform magnetic field Show force on a wire in a magnetic field Torques on current loops Galvanometer Magnetic dipole moment is called Demo: show torque on current loop (galvanometer) Electron moving with speed v in a crossed electric and magnetic field Discovery of the electron by J.J. Thompson in 1897 Chapter 28 Problem 18 Chapter 28 Problem 37 Chapter 28 Problem 47

Презентация на тему: «Lecture 8 Magnetic Fields Ch». Автор: Physics Department. Файл: «Lecture 8 Magnetic Fields Ch.ppt». Размер zip-архива: 923 КБ.

## Lecture 8 Magnetic Fields Ch

содержание презентации «Lecture 8 Magnetic Fields Ch.ppt»
СлайдТекст
1 ### Lecture 8 Magnetic Fields Ch

29

Cartoon Magnesia, Bar Magnet with N/S Poles, Right Hand Rule Topics Permanent magnets Magnetic field lines, Force on a moving charge, Right hand rule, Force on a current carrying wire in a magnetic field, Torque on a current loop Demos Compass, declinometer, globe, magnet Iron fillings and bar magnets Compass needle array Pair of gray magnets CRT illustrating electron beam bent bent by a bar magnet - Lorentz law Gimbal mounted bar magnet Wire jumping out of a horseshoe magnet. Coil in a magnet Elmo Polling

2 3 ### \

4 5 6 7 ### Magnetic Fields

Magnetism has been around as long as there has been an Earth with an iron magnetic core. Thousands of years ago the Chinese built compasses for navigation in the shape of a spoon with rounded bottoms on which they balanced (Rather curious shape for people who eat with chopsticks). Certain natural rocks are ferromagnetic – having been magnetized by cooling of the Earth’s core. Show a sample of natural magnetic rock. Put it next to many compasses.

8 ### Magnetism’s Sociabilities

Magnetism has always has something of a mystic aura about it. It is usually spoken of in a favorable light. Animal magnetism, magnetic personality, and now you can wear magnetic collars, bracelets, magnetic beds all designed to make you healthier – even grow hair. We do not have the same feeling about electricity. If you live near electric power lines, the first thing you want to do is to sue the electric company.

9 ### Compass and Declinometer

In 1600 William Gilbert used a compass needle to show how it oriented itself in the direction of the north geographic pole of the Earth, which happens to be the south magnetic pole of the Earth’s permanent magnetic field. Show compass and declinometer. Each has a slightly magnetized needle that is free to rotate. The compass lines up with the component of the magnetic field line parallel to the surface of the Earth. The declinometer lines up with the actual magnetic field line itself. It says that the angle between the field lines and the surface is 71 degrees as measured from the south. Earth’s magnetic field Basically there are two types of magnets: permanent magnets and electromagnets Show field lines for a bar magnet. Show bar magnet surrounded by compass needle array.

10 ### Permanent Magnets

Bar magnet is a model of a ferromagnetic material that can be permanently magnetized. Other ferromagnetic materials are cobalt and nickel. The origin of magnetism in materials is due mostly to the spinning motion of the charged electron on its own axis. There is a small contribution from the orbital motion of the electron.

Atomic origin of magnetic field

11 ### Permanent Magnets (continued)

In ferromagnetic materials there are whole sections of the iron called domains where the magnetism does add up from individual electrons. Then there are other sections or domains where contributions from different domains can cancel. However, by putting the iron in a weak magnetic field you can align the domains more or less permanently and produce a permanent bar magnet as you see here. In nonmagnetic materials the contributions from all The electrons cancel out. Domains are not even formed.

12 ### Magnetic field lines do not stop at surface

They are continuous. They make complete loops. Field lines for a bar magnet are the same as for a current loop

13 ### Magnetic field lines

Similarities to electric lines A line drawn tangent to a field line is the direction of the field at that point. The density of field lines still represent the strength of the field. Differences The magnetic field lines do not terminate on anything. They form complete loops. There is no magnetic charge on as there was electric charge in the electric case. This means if you cut a bar magnet in half you get two smaller bar magnets ad infinitum all the way down to the atomic level – Magnetic atoms have an atomic dipole – not a monopole as is the case for electric charge. They are not necessarily perpendicular to the surface of the ferromagnetic material.

14 ### Definition of magnetic Field

definition of a magnetic field The units of B are or in SI units(MKS). This is called a Tesla (T). One Tesla is a very strong field. A commonly used smaller unit is the Gauss. 1 T = 104 G (Have to convert Gauss to Tesla in formulas in MKS) In general the force depends on angle . This is called the Lorentz Force

15 ### In analogy with the electric force on a point charge, the

corresponding equation for a force on a moving point charge in a magnetic field is:

Consider a uniform B field for simplicity.

Magnitude of Direction of F is given by the right hand rule (see next slide).

If the angle between v and B is ? = 0, then the force = 0.

v

sin(0o) = 0

F = 0

B

If ? = 90, then the force = and the particle moves in a circle.

16 ### Use right hand rule to find the direction of F

Positive Charge

+

Rotate v into B through the smaller angle f and the force F will be in the direction a right handed screw will move.

17 ### Motion of a point positive charge “ ” in a magnetic field

B is directed into the paper

v

F

v

F

+

r

= qvBsin90o

F

Magnitude of F = qvB

Direction is given by the RHR (right hand rule)

v

x

x

x

x

x

x

18 ### Find the radius r and period of motion for a + charge moving in the

magnetic field B. Use Newtons 2nd Law.

v

a

r

Important formula in Physics

What is the period of revolution of the motion?

Note the period is independent of the radius, amplitude, and velocity. Example of simple harmonic motion in 2D.

T is also the cyclotron period.

Cyclotron frequency

It is important in the design of the cyclotron accelerator. Of course, this is important because today it is used to make medical isotopes for radiation therapy.

x

x

x

x

19 ### Example: If a proton moves in a circle of radius 21 cm perpendicular

to a B field of 0.4 T, what is the speed of the proton and the frequency of motion?

x

v

x

x

r

x

x

x

x

x

20 ### Use right hand rule to find the direction of F

Negative Charge

+

Rotate v into B through the smaller angle f and the force F will be in the opposite Direction a right handed screw will move.

21 ### Suppose we have an electron

Which picture is correct?

x

x

x

x

x

x

x

x

yes

B

No

v

F

F

v

22 ### Example of the force on a fast moving proton due to the earth’s

magnetic field. (Already we know we can neglect gravity, but can we neglect magnetism?) Magnetic field of earth is about 0.5 gauss. Convert to Tesla. 1 gauss=10-4 Tesla

Let v = 107 m/s moving North. What is the direction and magnitude of F? Take B = 0.5x10-4 T and v perpendicular B to get maximum effect.

(a very fast-moving proton)

V x B is into the paper (west). Check with globe

Earth

23 ### Force on a current-carrying wire in a uniform magnetic field

When a wire carries current in a magnetic field, there is a force on the wire that is the sum of the forces acting on each charge that is contributing to the current.

B (Out of the paper)

+

vd is the drift velocity of the positive charges.

Cross sectional area A of the wire

F

vd

i

L

n = density of positive mobile charges

Number of charges = nAL

v is perpendicular to B

or

L is a vector in the direction of the current i with magnitude equal to the length of the wire.

Also

24 ### Show force on a wire in a magnetic field

Current down

Current up

Drift velocity of electrons

25 ### Torques on current loops

Electric motors operate by connecting a coil in a magnetic field to a current supply, which produces a torque on the coil causing it to rotate.

Normal

i

P

a

i

b

Above is a rectangular loop of wire of sides a and b carrying current I and is in a uniform magnetic field B that is perpendicular to the normal n.

Equal and opposite forces are exerted on the sides a. No forces exerted on b since i is parallel to B

Since net force is zero, we can evaluate torque at any point. Evaluate it at P. Torque tends to rotate loop until plane is perpendicular to B.

A=ab = area of loop

Multiply by N for N loops

26 ### Galvanometer

27 ### Magnetic dipole moment is called

and is a vector

Recall that for Electric dipole moment p

How do you define the direction of ? ? RHR

28 ### Demo: show torque on current loop (galvanometer)

Can you predict direction of rotation?

Example

A square loop has N = 100 turns. The area of the loop is 4 cm2 and it carries a current I = 10 A. It makes an angle of 30o with a B field equal to 0.8 T. Find the magnetic moment of the loop and the torque.

Demo: Show world’s simplest electric motor

(scratch off all insulation on one end) Scratch off half on the other end Momentum will carry it ? turn (no opportunity for current to reverse coil direction)

29 ### Electron moving with speed v in a crossed electric and magnetic field

in a cathode ray tube.

Electric field bends particle upwards Magnetic field bends it downwards

y

e

30 ### Discovery of the electron by J.J. Thompson in 1897

Show demo of CRT

E=0, B=0 Observe spot on screen

2. Set E to some value and measure y the deflection

3. Now turn on B until spot returns to the original position

This ratio was first measured by Thompson to be lighter than hydrogen by 1000

4 Solve for

31 ### Chapter 28 Problem 18

An alpha particle (q = +2e, m = 4.00 u) travels in a circular path of radius 5.00 cm in a magnetic field with B = 1.60 T. Calculate the following values. (a) the speed of the particle (b) its period of revolution (c) its kinetic energy (d) the potential difference through which it would have to be accelerated to achieve this energy

32 ### Chapter 28 Problem 37

A 2.3 kg copper rod rests on two horizontal rails 2.4 m apart and carries a current of 60 A from one rail to the other. The coefficient of static friction between rod and rails is 0.51. What is the smallest magnetic field (not necessarily vertical) that would cause the rod to slide? (a) magnitude and direction

33 ### Chapter 28 Problem 47

A circular coil of 130 turns has a radius of 1.50 cm. (a) Calculate the current that results in a magnetic dipole moment of 2.30 A·m2. (b) Find the maximum torque that the coil, carrying this current, can experience in a uniform 20.0 mT magnetic field.

«Lecture 8 Magnetic Fields Ch»
http://900igr.net/prezentacija/anglijskij-jazyk/lecture-8-magnetic-fields-ch-106224.html
cсылка на страницу
Урок

29 тем
Слайды