Без темы
<<  Сезонные изменения в сообществах живых организмов Сезонные явления в жизни  >>
Введение в тему «Сезонные корректировки»
Введение в тему «Сезонные корректировки»
Обзор
Обзор
Сезонные корректировки и первичные данные – индекс промышленного
Сезонные корректировки и первичные данные – индекс промышленного
Изменение процентного соотношения ИПП с ноября 2007 по декабрь 2007
Изменение процентного соотношения ИПП с ноября 2007 по декабрь 2007
Для чего нужны сезонные корректировки (СК)
Для чего нужны сезонные корректировки (СК)
Сезонные корректировки (СК)
Сезонные корректировки (СК)
Цель сезонных корректировок
Цель сезонных корректировок
Цель сезонных корректировок
Цель сезонных корректировок
ИПП - Казахстан
ИПП - Казахстан
Основные понятия – временной ряд
Основные понятия – временной ряд
Виды временных рядов
Виды временных рядов
Основные понятия - сезонность
Основные понятия - сезонность
Сезонные влияния
Сезонные влияния
Операционный день
Операционный день
Передвигающиеся праздники
Передвигающиеся праздники
Базовые концепции - тенденция
Базовые концепции - тенденция
Базовые концепции - нерегулярность
Базовые концепции - нерегулярность
Модели для разбивки ряда на составные части
Модели для разбивки ряда на составные части
Модель аддитивного распада
Модель аддитивного распада
Пример аддитивного ряда – ИПП для Сербии
Пример аддитивного ряда – ИПП для Сербии
Аддитивная модель
Аддитивная модель
Модель мультипликативного распада
Модель мультипликативного распада
Мультипликативная модель
Мультипликативная модель
Пример мультипликативного ряда – ИПП для Кыргызстана
Пример мультипликативного ряда – ИПП для Кыргызстана
Виды подходов к сезонным корректировкам
Виды подходов к сезонным корректировкам
Методы, основанные на модели
Методы, основанные на модели
Методы, основанные на модели
Методы, основанные на модели
TRAMO/SEATS
TRAMO/SEATS
TRAMO/SEATS
TRAMO/SEATS
Методы, основанные на фильтре
Методы, основанные на фильтре
Методы, основанные на фильтре
Методы, основанные на фильтре
X12-arima (арима)
X12-arima (арима)
Метод X12-ARIMA описан наилучшим образом на следующей структурной
Метод X12-ARIMA описан наилучшим образом на следующей структурной
http://www
http://www
Сентябрь 2008
Сентябрь 2008
Программное обеспечение
Программное обеспечение
Критерии «качественной» сезонной корректировки
Критерии «качественной» сезонной корректировки
Рекомендованная практика для сезонной корректировки (Евростат)
Рекомендованная практика для сезонной корректировки (Евростат)
Рекомендованная практика для сезонной корректировки (Евростат)
Рекомендованная практика для сезонной корректировки (Евростат)
Рекомендованная практика для сезонной корректировки (Евростат)
Рекомендованная практика для сезонной корректировки (Евростат)
Форвардные факторы против параллельной поправки
Форвардные факторы против параллельной поправки
Сезонная корректировка – шаг за шагом
Сезонная корректировка – шаг за шагом
Сезонная корректировка – шаг за шагом
Сезонная корректировка – шаг за шагом
Сезонная корректировка – шаг за шагом
Сезонная корректировка – шаг за шагом
Форвардные факторы против параллельных поправок
Форвардные факторы против параллельных поправок
Вопросы, которые могут усложнить процесс сезонной корректировки
Вопросы, которые могут усложнить процесс сезонной корректировки
Всплески
Всплески
Всплески
Всплески
Полезная литература
Полезная литература
Вопросы
Вопросы

Презентация: «Сезонные корректировки». Автор: Juergen Schwaerzler. Файл: «Сезонные корректировки.ppt». Размер zip-архива: 1404 КБ.

Сезонные корректировки

содержание презентации «Сезонные корректировки.ppt»
СлайдТекст
1 Введение в тему «Сезонные корректировки»

Введение в тему «Сезонные корректировки»

Информационное сообщение Статистического Бюро Австралии: Ознакомительный курс по анализу временных рядов; Центральное статистическое бюро Венгрии: Методы и практика сезонных корректировок; Бундерсбанк, Роберт Киршнер: X-12 ARIMA курс обучения «Сезонная корректировка экономических данных» Артур Андрисьяк Сектор экономической статистики, ЕЭК ООН

2 Обзор

Обзор

Что и почему Базовые концепции Методы Программное обеспечение Рекомендуемые практики Шаг за шагом Вопросы Список литературы

Сентябрь 2008

3 Сезонные корректировки и первичные данные – индекс промышленного

Сезонные корректировки и первичные данные – индекс промышленного

производства (ИПП)

4 Изменение процентного соотношения ИПП с ноября 2007 по декабрь 2007

Изменение процентного соотношения ИПП с ноября 2007 по декабрь 2007

Армения

Германия

Сербия

Украина

1.1%

-9.6%

4.4%

-0.3%

-2.3%

1.4%

0.1%

1.4%

Первичные данные

Сезонные корректировки (СК)

Сентябрь 2008

5 Для чего нужны сезонные корректировки (СК)

Для чего нужны сезонные корректировки (СК)

Сезонные корректировки данных в основном нужны для следующих трех целей: СК полезны для разработки краткосрочных прогнозов СК помогают связать одни временные ряды с другими, или предельными случаями Включая сопоставление временных рядов по различным странам СК дают возможность сравнивать временные ряды от одного месяца к другому

Сентябрь 2008

6 Сезонные корректировки (СК)

Сезонные корректировки (СК)

СК – это метод анализа, при котором рассчитываются, а затем удаляются факторы воздействия из временных рядов, которые возникают систематически и связаны с сезонной деятельностью. Сезонные корректировки временных рядов могут формироваться путем устранения из первичных данных различий, обусловленных сезонностью деятельности. Динамические ряды затем получают путем устранения оставшихся нерегулярных факторов влияния из временных рядов с сезонными корректировками.

Сентябрь 2008

7 Цель сезонных корректировок

Цель сезонных корректировок

Цель СК заключается в упразднении воздействий, вызванных сезонностью и рабочими днями. Следовательно, в рядах с поправкой на сезонность отсутствуют воздействия, связанные с сезонностью и рабочими днями. Источник: Бундесбанк

Сентябрь 2008

8 Цель сезонных корректировок

Цель сезонных корректировок

В общем, сезонные корректировки преобразовывают мир, в котором мы живем, в мир, где нет различий, вызываемых сезонной активностью и, следовательно, изменений в рабочих днях. В мире сезонных корректировок, например, температура всегда держится на одном уровне как зимой, так и летом; там нет праздников и отпусков, Рождество отменено, а люди работают каждый день без выходных с одинаковой интенсивностью и т.д. Источник: Бундесбанк

Сентябрь 2008

9 ИПП - Казахстан

ИПП - Казахстан

Сентябрь 2008

10 Основные понятия – временной ряд

Основные понятия – временной ряд

Временной ряд – это совокупность наблюдений за определенными элементами данных, наблюдаемых во времени (измерение проводится через равные временные интервалы); Например, ежемесячный ИПП; Данные, собираемые на нерегулярной основе или единовременно, - не относятся к временному ряду

Сентябрь 2008

11 Виды временных рядов

Виды временных рядов

Запасы – это измерение деятельности на определенном отрезке времени, и это измерение может рассматриваться в качестве инвентаризации Например, ежемесячное обследование рабочей силы – учет занятости человека в период времени, когда проводилось такое обследование Потоки – это ряды, служащие мерой деятельности на ту или иную дату Например, в потоки могут быть включены розница, дефицит текущего баланса, платежный баланс

Сентябрь 2008

12 Основные понятия - сезонность

Основные понятия - сезонность

Сезонность можно рассматривать как факторы, повторяющиеся один или несколько раз в год; Сезонное воздействие обычно бывает стабильным с учетом распределения во времени, его направления и величины; Сезонный компонент временного ряда включает в себя три основных типа воздействия, обусловленных сезонностью активности: Сезонные влияния; Влияние операционного дня; Влияние дат праздников, передвигающихся по календарю в том или ином году

Сентябрь 2008

13 Сезонные влияния

Сезонные влияния

Сезонные влияния представляют собой внутригодовые колебания на уровне временных рядов, повторяющиеся более или менее регулярно из года в год. Тепло летом и холод зимой, НО погодные условия, которые не являются характерными для отдельно взятого сезона, такие как снег летом, возникают нерегулярно, и не являются сезонными влияниями. Отражение традиционного поведения, связанного с календарем и различными социальными (Китайский Новый Год), экономическими (предварительная выплата налогов ежеквартально) и административными процедурами (налоговая декларация) и влияние Рождества и сезона отпусков.

14 Операционный день

Операционный день

Влияние операционного дня рассматривается как воздействие количества дней и специфики дней на ряд в отдельно взятом месяце. Обычно, календарный месяц состоит из четырех недель (28 дней) плюс еще один, два или три дня. Эти дополнительные дни будут влиять на деятельность в течение всего месяца несмотря на то, что уровень деятельности в эти дни недели разный.

Сентябрь 2008

15 Передвигающиеся праздники

Передвигающиеся праздники

Влияние передвигающихся праздников касается воздействия на уровень ряда праздников, которое возникает один раз в год, но систематически сдвигает точные сроки. Примерами передвигающихся праздников могут служить Пасха и Китайский Новый Год, где точная дата определяется лунным циклом.

Сентябрь 2008

16 Базовые концепции - тенденция

Базовые концепции - тенденция

Тенденция определяется как долгосрочное движение во временном ряде. Тенденция – это отражение основного уровня ряда. Это обычно вызывается воздействием таких событий, как рост населения, инфляция цен и общее экономическое развитие. Компонент тенденции иногда рассматривается как цикл тенденции.

Сентябрь 2008

17 Базовые концепции - нерегулярность

Базовые концепции - нерегулярность

Нерегулярность является оставшимся компонентом ряда после компонентов сезонности и тенденции, которые убираются из первичных данных. Поэтому, он также иногда рассматривается как остаточный компонент. Он пытается собрать оставшиеся краткосрочные колебания в ряде, которые не являются ни систематическими, ни предсказуемыми. Нерегулярность временных рядов может быть, а может и не быть случайным. Она может содержать в себе как случайные влияния (белый шум), так и искусственные признаки постоянной ошибки, которые необязательно являются случайными. В большинстве динамических рядов содержится некоторая изменчивость, заставляющая первичные данные и значения с поправкой на сезонность колебаться на уровне общей тенденции. Но в случаях необычно высокой степени нерегулярности значения могут отклоняться от тенденции, приводя к экстремальному значению. Некоторые примеры причин возникновения экстремальных значений, относятся к неблагоприятным стихийным бедствиям и трудовым конфликтам.

Сентябрь 2008

18 Модели для разбивки ряда на составные части

Модели для разбивки ряда на составные части

Компоненты временного ряда It = нерегулярный St = сезонный Tt = тенденция Ot = первичный Модель аддитивного распада Ot = St + Tt + It Модель мультипликативного распада Ot = St x Tt x It

Сентябрь 2008

19 Модель аддитивного распада

Модель аддитивного распада

Модель аддитивного распада предполагает, что компоненты ряда ведут себя независимо друг от друга. Динамические ряды колеблются, хотя амплитуда скорректированных рядов (величина сезонных пиков) остается приблизительно такой же, что ведет к аддитивной модели. Ot = St + Tt + It

Сентябрь 2008

20 Пример аддитивного ряда – ИПП для Сербии

Пример аддитивного ряда – ИПП для Сербии

Сентябрь 2008

21 Аддитивная модель

Аддитивная модель

Сентябрь 2008

22 Модель мультипликативного распада

Модель мультипликативного распада

При повышении динамики рядов, начинает возрастать величина сезонных пробелов, что ведет к мультипликативной модели Ot = St x Tt x It

Сентябрь 2008

23 Мультипликативная модель

Мультипликативная модель

Сентябрь 2008

24 Пример мультипликативного ряда – ИПП для Кыргызстана

Пример мультипликативного ряда – ИПП для Кыргызстана

Сентябрь 2008

25 Виды подходов к сезонным корректировкам

Виды подходов к сезонным корректировкам

Методы, основанные на модели Методы, основанные на фильтре

Сентябрь 2008

26 Методы, основанные на модели

Методы, основанные на модели

Подход, основанный на модели, требует чтобы компоненты временных рядов из первичных данных как динамика, сезонность и нерегулярность - должны моделироваться по отдельности. В качестве альтернативы, можно смоделировать ряды с первичными данными, а затем из этой модели можно получить динамику, сезонность и нерегулярность. Методы, основанные на модели, предполагают, что компонент нерегулярности, такой как белый шум, т.е. нерегулярный, не имеет структуры, нулевой средней и постоянной переменной.

Сентябрь 2008

27 Методы, основанные на модели

Методы, основанные на модели

TRAMO/SEATS X13-ARIMA/SEATS STAMP

Сентябрь 2008

28 TRAMO/SEATS

TRAMO/SEATS

TRAMO (регрессия временного ряда с шумом ARIMA, отсутствующими наблюдениями и посторонними значениями) и SEATS (выделение сигнала во временном ряде ARIMA) - являются связанными между собой программами, которые первоначально были разработанны Виктором Гомез и Августином Маравал в Банке Испании. Две программы структурированы так, чтобы использовать их вместе как в углубленном анализе для нескольких рядов, так и в рутинном применении для большего числа рядов, и могут работать полностью в автоматическом режиме. При применении для целей сезонных корректировок, TRAMO предварительно подготавливает временные ряды данных к корректировке при помощи SEATS. Две программы интенсивно используются в настоящее время организациями, занимающимися разработкой данных, и экономическими агентствами, включая Евростат и Европейский Центральный Банк. Программы TRAMO и SEATS представляют собой метод, полностью основанный на модели, для прогнозирования и получения сигнала в одномерных временных рядах. Благодаря модельным характеристикам, этот метод становится мощным инструментом для проведения детального анализа временных рядов.

Сентябрь 2008

29 TRAMO/SEATS

TRAMO/SEATS

www.bde.es

Сентябрь 2008

30 Методы, основанные на фильтре

Методы, основанные на фильтре

Данный метод применяет набор неперестраиваемых фильтров (скользящие средние) для разложения временного ряда на динамику, сезонность и нерегулярность. Обычно, симметричные линейные фильтры применяются к середине ряда, а ассиметричные линейные фильтры – к концам ряда.

Сентябрь 2008

31 Методы, основанные на фильтре

Методы, основанные на фильтре

X11 X11-ARIMA X12-ARIMA (использует модели regarima для прогноза, ретрополяции и предварительной поправки) STL SABL SEASABS

Сентябрь 2008

32 X12-arima (арима)

X12-arima (арима)

X12-АРИМА была разработана Бюро по Переписи Населения США как расширенная и усовершенствованная версия метода X11- АРИМА Статистического Комитета Канады (Dagum (1980)). Программа выполняет следующие шаги. Первый ряд модифицируется с помощью любых предварительных поправок, определяемых пользователями. Затем программа подгоняет модель regARIMA к рядам, чтобы определить и откорректировать посторонние значения и другие искажающие эффекты в целях улучшения прогнозов и поправок на сезонность. Затем программа использует ряд скользящих средних, чтобы разложить временной ряд на три компонента. На последнем этапе получаем более широкий диапазон диагностической статистики, описывающий конечные сезонные корректировки, и даются указания для возможных улучшений. Метод X12-ARIMA описан наилучшим образом на следующей структурной схеме, представленной Дэвидом Финдлей и Центральным Банком Германии, соответственно.

Сентябрь 2008

33 Метод X12-ARIMA описан наилучшим образом на следующей структурной

Метод X12-ARIMA описан наилучшим образом на следующей структурной

схеме, которая представлена Дэвидом Финдлей и Центральным Банком Германии, соответственно.

X12-арима

Сентябрь 2008

34 http://www

http://www

census.gov/srd/www/x12a/

X12-арима

Сентябрь 2008

35 Сентябрь 2008

Сентябрь 2008

36 Программное обеспечение

Программное обеспечение

TRAMO/SEATS http://www.Bde.Es X12-АРИМА http://www.Census.Gov/srd/www/x12a/ ДЕМЕТРА http://circa.Europa.Eu/irc/dsis/eurosam/info/data/demetra.Htm http://circa.Europa.Eu/irc/dsis/eurosam/info/data/

Сентябрь 2008

37 Критерии «качественной» сезонной корректировки

Критерии «качественной» сезонной корректировки

Ряды, в которых отсутствует сезонность, не должны корректироваться на сезонность; В данных с сезонной корректировкой не должны оставаться остаточные сезонные колебания и скорректированные изменения (операционный день, праздники, …); Не следует добиваться чрезмерного сглаживания; Качественная корректировка не приводит к необходимости необычного пересмотра значений сезонной корректировки, соответствующей особенностям временных рядов; При осуществлении корректировки следует отдавать предпочтение более простым моделям АРИМА; Основополагающая идея, определившая выбор, должна быть зафиксирована в документации

Сентябрь 2008

38 Рекомендованная практика для сезонной корректировки (Евростат)

Рекомендованная практика для сезонной корректировки (Евростат)

Агрегирование Сохранение взаимоотношений между данными – косвенный подход Временные ряды содержащие одинаковые показатели сезонности (суммирование временных рядов позволит во-первых, укрепит структуру сезонных колебаний, наряду с возможностью устранения до некоторой степени искажений во временных рядах) – прямая поправка Пересмотр Согласованная поправка против прогрессивных факторов Учесть: образец пересмотра первичных данных, основное назначение данных, стабильность компонента сезонности Политика распространения публикаций Если сезонность присутствует и может быть выявлена, временной ряд следует представлять в форме сезонной корректировки. Используемые метод и программное обеспечение должны быть четко указаны в метаданных, сопровождающих временные ряды. В случае просьбы со стороны пользователя можно также распространять график публикаций временных рядов с сезонными корректировками и/или расчетов динамических циклов (в графиках).

Сентябрь 2008

39 Рекомендованная практика для сезонной корректировки (Евростат)

Рекомендованная практика для сезонной корректировки (Евростат)

Дополнительная информация, подлежащая публикации Правила по принятию решений относительно выбора той или иной опции из программы Подход/политика агрегирования Выявление посторонних значений и методы коррекции с объяснением Правила по принятию решений о преобразовании Политика пересмотра Описание проведения поправок относительно рабочего/операционного дня Контактная информация и адреса Календарный эффект Пропорциональный подход против регрессивного подхода Методы на основе модели – надо использовать регрессивный подход Выявление посторонних значений Особенно важное значение имеет экспертная информация по всплескам Посторонние значения следует убрать до начала проведения сезонной корректировки

Сентябрь 2008

40 Рекомендованная практика для сезонной корректировки (Евростат)

Рекомендованная практика для сезонной корректировки (Евростат)

Анализ преобразования Наиболее популярные пакеты программных обеспечений предоставляют тесты для лог-трансформации Правильность автоматического выбора должна подтверждаться на графических изображениях временных рядов Если диагностика неубедительная – визуально изучите графическое изображение временных рядов Если во временных рядах содержатся нулевые и отрицательные значения – их следует дополнительно скорректировать Если у ряда есть снижающийся уровень с положительными значениями близкими к нулю, но нет отрицательных значений - следует применить мультипликативную поправку Временная согласованность Можно сохранить временную согласованность скорректированных данных если пользователь сильно заинтересован в ней, а в случае быстрой смены сезонности – нет необходимости в сохранении.

Сентябрь 2008

41 Форвардные факторы против параллельной поправки

Форвардные факторы против параллельной поправки

Для определения факторов сезонности и операционного дня, которые будут применяться в ближайшие 4 квартала или 12 месяцев (а это зависит от того, является ли временной ряд квартальным или месячным) Форвардные факторы следует выводить на основе годового анализа самых последних имеющихся данных; Для проведения параллельных корректировок применяются данные, имеющиеся по каждому базовому периоду, чтобы сделать перерасчет факторов сезонности и операционного дня. По данному методу, данные по текущему месяцу применяются для расчета факторов сезонности и операционного дня для текущего и предыдущих месяцев. Данный метод обеспечивает постоянное уточнение расчетов при появлении новых данных;

Сентябрь 2008

42 Сезонная корректировка – шаг за шагом

Сезонная корректировка – шаг за шагом

ШАГ 0 – Длина ряда Временной ряд должен состоять, как минимум, из трех лет (36 наблюдений) для ежемесячного ряда и четырехлетним (16 наблюдений) для ежеквартального ряда; Для адекватной корректировки по сезонам необходимо более пяти лет. Если временной ряд охватывает период в 10 лет - может возникнуть неустойчивость сезонной корректировки среди данных; Если временной ряд окажется слишком длинным, то информация о сезонности, имевшей место много лет назад, может оказаться малозначимой для текущего периода времени, особенно если при этом вносились изменения в концепцию, определения и методологию ШАГ 1 – Предпосылки, тест для сезонности Посмотрите на данные и диаграмму временного ряда первичных данных Необходимо определить возможные значения всплесков Ряд, где слишком много всплесков (больше 10%), создаст проблемы с расчетами Необходимо изучить спектральную диаграмму первичного ряда Если сезонность недостаточно стойкая для сезонной корректировки, то этот ряд не надо корректировать на сезонность.

Сентябрь 2008

43 Сезонная корректировка – шаг за шагом

Сезонная корректировка – шаг за шагом

ШАГ 2 – Вид преобразования Рекомендуется автоматический тест для лог-трансформации; Результаты должны быть подтверждены с помощью диаграмм ряда ШАГ 3 – Эффект календаря Необходимо определить влияние той или иной регрессии, такой как операционный/рабочий день, високосный год, сдвигаемые праздники (например, Пасха) и национальные праздники, имевшие место в рассматриваемом временном ряду; Если влияния не приемлемы для ряда – не надо применять регрессоры для этих влияний ШАГ 4 – Корректировка всплесков Необходимо определить ряд с большим количеством всплесков по отношению к длине временного ряда – можно попытаться повторно смоделировать эти ряды ШАГ 5 – порядок модели ARIMA Надо использовать автоматическую процедуру Следует выявить коэффициенты модели ARIMA не слишком высокого порядка.

Сентябрь 2008

44 Сезонная корректировка – шаг за шагом

Сезонная корректировка – шаг за шагом

ШАГ 6 для семьи X – выбор фильтра Необходимо проверить, чтобы сезонные фильтры были в соответствии с глобальным коэффициентом смещения сезонности. ШАГ 7 – Мониторинг результатов Не надо оставлять какие-либо эффекты сезонности или календарные эффекты в опубликованном ряду с сезонной корректировкой или в компонентах нерегулярности. Если имеются остаточные эффекты сезонности или календарные эффекты, то модель и варианты регрессора необходимо проверить, чтобы упразднить сезонность. ШАГ 8 – Диагностика устойчивости Даже если выявлены остаточные эффекты, корректировка окажется недостаточной, если эти исправленные значения подвергаются большим изменениям, если они будут повторно рассчитываются по мере поступления новых данных. В любом случае, неустойчивость нужно измерять и проверять.

Сентябрь 2008

45 Форвардные факторы против параллельных поправок

Форвардные факторы против параллельных поправок

Для проведения параллельных корректировок применяются данные, имеющиеся по каждому базовому периоду, чтобы сделать перерасчет факторов сезонности и операционного дня. По данному методу, данные по текущему месяцу применяются для расчета факторов сезонности и операционного дня для текущего и предыдущих месяцев. Данный метод обеспечивает постоянное уточнение расчетов при появлении новых данных

Сентябрь 2008

46 Вопросы, которые могут усложнить процесс сезонной корректировки

Вопросы, которые могут усложнить процесс сезонной корректировки

Всплески (необычные расчеты): Здесь необходимо обратить внимание на необычные расчеты, аналогично тому, как в случае выборки внимание обращается на необычные явления, замечаемые во время наблюдений. Всплески могут вызвать пробелы во временных рядах первичных данных, во временных рядах с сезонной корректировкой и динамических рядах, если только они не были модифицированы или исправлены в процессе сезонной корректировки Пересмотры: Процесс сезонной корректировки приводит к пересмотру динамических рядов и рядов с уже внесенными поправками на сезонность. Пересмотры нежелательны ни для ABS, ни для пользователей данных. Следует выбирать тот метод анализа, который позволяет определить баланс между пересмотром и качеством временного ряда с сезонной корректировкой. Этот вопрос обычно рассматривается как проблема нахождения конечной точки. Агрегирование и распад: Регулярные и нерегулярные влияния часто рассчитываются и упраздняются из временного ряда на высоких уровнях разукрупнения, как например по отраслям на уровне самого крупного административного деления, принятого в той или иной стране. Временные ряды с сезонной поправкой на высшем уровне на уровне страны, например, в Австралии, можно создать с помощью присоединения компонентных рядов к высшему уровню (чтобы сформировать косвенно скорректированные ряды). Получаемые таким образом ряды не будут одинаковыми. Общий вопрос, с которым сталкиваются аналитики временных рядов, проливает свет на то, почему эти два подхода не приводят к получению одинаковых временных рядов.

Сентябрь 2008

47 Всплески

Всплески

Сентябрь 2008

48 Всплески

Всплески

Всплески – это данные, которые не подходят для тенденции наблюдаемого временного ряда, которые выходят за пределы ожидаемого диапазона на основе типичного направления тенденции или сезонной составляющей (временного ряда); Аддитивный выброс (АВ) – значение только одного наблюдения, оказавшегося под воздействием. АВ может быть вызван либо эффектом случайности или непредсказуемыми причинами, таких как забастовка, плохая погода или война. Временное изменение: значение одного наблюдения, которое чрезвычайно высокое или низкое, затем размер отклонения сокращается постепенно (экспоненциально) в ходе последующих наблюдений до тех пор, пока временной ряд не вернется к начальному уровню. Например, в строительном секторе продуктивность будет выше, если зимой погода будет лучше, чем обычно (более высокая температура, нет снега). Если погода обычная, продуктивность вернется на обычный уровень. Смещение уровня: начиная с определенного времени, уровень временного ряда подвергается постоянному изменению. Причины: изменение в концепции и дефинициях по проведению обследований среди населения, в методе сбора данных, в экономическом поведении, в законодательстве или социальных традициях. Например, постоянный рост заработной платы.

Сентябрь 2008

49 Полезная литература

Полезная литература

Евростат. Руководство ESS по поправке на сезонность http://epp.eurostat.ec.europa.eu/pls/portal/docs/PAGE/PGP_RESEARCH/PGE_RESEARCH_04/ESS%20GUIDELINES%20ON%20SA.PDF Евростат. Проект Евростата по поправке на сезонность. http://circa.europa.eu/irc/dsis/eurosam/info/data/ Центральное Статистическое Бюро Венгрии (2007). Методы и практика по поправке на сезонность. www.ksh.hu/hosa Бюро по переписи населения США. The X-12-ARIMA Программа поправки на сезонность. http://www.census.gov/srd/www/x12a/ Банк Испании. Программное обеспечение по статистике и эконометрике. http://www.bde.es/servicio/software/econome.htm Статистическое бюро Австралии (2005). Информационное сообщение, Вводный курс по анализу временного ряда – Electronic Delivery. 1346.0.55.001. http://www.abs.gov.au/ausstats/abs@.NSF/papersbycatalogue/7A71E7935D23BB17CA2570B1002A31DB?OpenDocument

Сентябрь 2008

50 Вопросы

Вопросы

СПАСИБО

Сентябрь 2008

«Сезонные корректировки»
http://900igr.net/prezentacija/bez_uroka/sezonnye-korrektirovki-204388.html
cсылка на страницу
Урок

Без урока

1 тема
Слайды
900igr.net > Презентации по > Без темы > Сезонные корректировки