Сфера услуг
<<  Антикризисный комплекс услуг Всего за: 999 рублей Банковские услуги для клиентов, работающих в сфере строительства и недвижимости  >>
Сфера
Сфера
Цели урока:
Цели урока:
Окружность
Окружность
Сфера
Сфера
Сфера
Сфера
Шар
Шар
Уравнение сферы
Уравнение сферы
№ 574(а) № 576 (а) № 577 (а) № 578 (устно)
№ 574(а) № 576 (а) № 577 (а) № 578 (устно)
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Взаимное расположение сферы и плоскости
Решение задач
Решение задач
Домашнее задание
Домашнее задание

Презентация на тему: «Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости». Автор: Ноутбукофф. Файл: «Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости.ppt». Размер zip-архива: 2651 КБ.

Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости

содержание презентации «Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости.ppt»
СлайдТекст
1 Сфера

Сфера

Уравнение сферы. Взаимное расположение сферы и плоскости.

2 Цели урока:

Цели урока:

Ввести понятие сферы, шара и их элементов Вывести уравнение сферы в заданной прямоугольной системе координат Рассмотреть возможные случаи взаимного расположения сферы и плоскости Формировать навык решения задач по теме

3 Окружность

Окружность

Окружность – множество точек плоскости, равноудаленных от данной точки Точка О – центр окружности ОА - радиус

А

О

4 Сфера

Сфера

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки Точка О – центр сферы Данное расстояние – радиус сферы (обозначается R)

5 Сфера

Сфера

Отрезок, соединяющий две точки сферы и проходящий через ее центр – диаметр сферы (равен 2R) Сфера может быть получена вращением полуокружности (АСВ) вокруг ее диаметра (АВ)

О

6 Шар

Шар

Тело, ограниченное сферой, называется шаром Шаром радиуса R и с центром в точке О называется тело, которое содержит все точки пространства, расположенные от точки О на расстоянии, не превышающем R (включая О), и не содержит других точек

7 Уравнение сферы

Уравнение сферы

Пусть R – радиус сферы С(х?,у?,z?) – центр окружности Расстояние от произвольной точки М(х,у,z) до точки С найдем по формуле Если точка М лежит на данной сфере, МС = R, или Координаты точки М удовлетворяют уравнению

8 № 574(а) № 576 (а) № 577 (а) № 578 (устно)

№ 574(а) № 576 (а) № 577 (а) № 578 (устно)

Решение задач

9 Взаимное расположение сферы и плоскости

Взаимное расположение сферы и плоскости

Обозначения R – радиус сферы d – расстояние от центра до плоскости ? Плоскость Оху совпадает с плоскостью ?, поэтому ее уравнение имеет вид z=0 Центр сферы С лежит на положительной полуоси Оz, т.е. имеет координаты С(0;0;d) Уравнение сферы

10 Взаимное расположение сферы и плоскости

Взаимное расположение сферы и плоскости

Если координаты произвольной точки М (х;у;z) удовлетворяют обоим уравнениям, то М лежит как в плоскости ?, так и на сфере. Вопрос о взаимном расположении сводится к исследованию системы уравнений Подставив z = 0 во второе уравнение, получим

11 Взаимное расположение сферы и плоскости

Взаимное расположение сферы и плоскости

1) d < R

12 Взаимное расположение сферы и плоскости

Взаимное расположение сферы и плоскости

2) d = R

13 Взаимное расположение сферы и плоскости

Взаимное расположение сферы и плоскости

3) d > R

14 Решение задач

Решение задач

№ 580

№ 582

15 Домашнее задание

Домашнее задание

П.64 – 66 № 576 (в) № 577 (в) № 581

«Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости»
http://900igr.net/prezentacija/ekonomika/sfera.-uravnenie-sfery.-vzaimnoe-raspolozhenie-sfery-i-ploskosti-231751.html
cсылка на страницу

Сфера услуг

8 презентаций о сфере услуг
Урок

Экономика

125 тем
Слайды
900igr.net > Презентации по экономике > Сфера услуг > Сфера. Уравнение сферы. Взаимное расположение сферы и плоскости