Динамика
<<  Закон гомологических рядов Вавилова Материальная точка  >>
Динамика твердого тела
Динамика твердого тела
Задачи динамики твердого тела
Задачи динамики твердого тела
Свободное твердое тело
Свободное твердое тело
Сведение к задаче
Сведение к задаче
4. Вычисление момента количеств движения
4. Вычисление момента количеств движения
Уравнения вращения
Уравнения вращения
6. Воспоминания из кинематики
6. Воспоминания из кинематики
7. Уравнения Эйлера
7. Уравнения Эйлера
Вращение
Вращение
9. Теорема об изменении количества движения
9. Теорема об изменении количества движения
Теорема
Теорема
11
11
Прямоугольный
Прямоугольный
Условия совпадения
Условия совпадения
Альтернативная форма
Альтернативная форма
Окончательный вид
Окончательный вид
Центр тяжести
Центр тяжести
Постановка задачи
Постановка задачи
Вычисление моментов инерции
Вычисление моментов инерции
Вычисление
Вычисление
Завершение
Завершение
21
21
22
22
23
23

Презентация на тему: «Динамика твёрдого тела». Автор: Andrey Egorov. Файл: «Динамика твёрдого тела.ppt». Размер zip-архива: 1107 КБ.

Динамика твёрдого тела

содержание презентации «Динамика твёрдого тела.ppt»
СлайдТекст
1 Динамика твердого тела

Динамика твердого тела

Лекции 3-4: основные задачи динамики тт. Уравнения эйлера. Вращение вокруг неподвижной оси

2 Задачи динамики твердого тела

Задачи динамики твердого тела

1. Основные задачи динамики твердого тела

Дана система сил действующих на твердое тело. Требуется описать движение тела

Будем различать три ситуации: Твердое тело свободно СВОБОДНОЕ ДВИЖЕНИЕ Твердое тело закреплено в одной точке ВРАЩЕНИЕ ВОКРУГ НЕПОДВИЖНОЙ ТОЧКИ Твердое тело закреплено в двух точках ВРАЩЕНИЕ ВОКРУГ НЕПОДВИЖНОЙ ОСИ

Совсемпросто

4) Твердое тело закреплено в 3-х, 4-х,… точках

Суперпросто

3 Свободное твердое тело

Свободное твердое тело

2. Исходные ур-ия движение свободного твердого тела

Свободное твердое тело имеет шесть степеней свободы

Например: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс

Для описания движения нужны шесть уравнений. Первые три из них даются теоремой о движении центра масс

Они служат для нахождения положения центра масс

Вторые три – теоремой об изменении момента количеств движения

Эти уравнения будут служить для нахождения ориентации тела относительно центра масс

4 Сведение к задаче

Сведение к задаче

3. Сведение к задаче о враще-нии вокруг неподвижной точки

Теорема об изменении момента количеств движения дает те же уравнения как будто бы твердое тело вращалось вокруг неподвижной точки C

5 4. Вычисление момента количеств движения

4. Вычисление момента количеств движения

6 Уравнения вращения

Уравнения вращения

5. Уравнения вращения в непод-вижной системе координат

НЕУДОБНЫ. Потому что не только компоненты , но и тензора инерции изменяются со временем из-за того, что тело со временем изменяет свою ориентацию относительно неподвижных осей.

ИДЕЯ№1: Перейти в подвижную систему координат, жестко связанную с телом

ИДЕЯ№2: Направить оси (xyz) по главным осям тензора инерции для точки О

7 6. Воспоминания из кинематики

6. Воспоминания из кинематики

=

8 7. Уравнения Эйлера

7. Уравнения Эйлера

+

Полная система уравнений вращения тела вокруг неподвижной точки

Повторить!

Динамические уравнения Эйлера

Кинематические уравнения Эйлера

9 Вращение

Вращение

8. Вращение вокруг неподвижной оси

Рассмотрим твердое тело, имеющее 2 неподвижные точки О, О1

Неподвижная система координат

Подвижная система координат, жестко связанная с телом

реакции связей в О, О1

Главный вектор и главный момент внешних сил

1) теоремы об изменении количества движения и момента количества движения (в неподвижной системе координат)

2) переход в подвижную систему координат

Воспользовались известным из кинематики фактом:

(1)

(2)

Относительная производная

Абсолютная производная

10 9. Теорема об изменении количества движения

9. Теорема об изменении количества движения

3) вычисляем фигурирующие в (1) вектора в подвижной СК

11 Теорема

Теорема

10. Теорема об изменении момента количеств движения

4) вычисляем фигурирующие в (2) вектора в подвижной СК

12 11

11

Уравнения движения

диф. ур-ие вращения Т.Т вокруг оси

Уравнения для определения поперечных реакций

Уравнение для определения

13 Прямоугольный

Прямоугольный

12. Пример

Равнобедренный прямоугольный треугольник вращается вокруг вертикальной оси, к которой он подвешен своим катетом. Найти боковые давления на опоры. Треугольник считать тонкой однородной пластинкой.

14 Условия совпадения

Условия совпадения

13. Условия совпадения динами-ческих и статических реакций

Уравнения для определения динамических поперечных реакций

Уравнения для определения статических поперечных реакций

Ур-ия для

Определитель обеих систем

Ур-ия для

Динамические реакции при вращении твердого тела равны статическим Ось вращения является главной центральной осью инерции тела.

При каких условиях динамические поперечные реакции совпадают со статическими?

15 Альтернативная форма

Альтернативная форма

14. Альтернативная форма ур-й для определения поперечных реакций

(1)

Исходные уравнения для определения динамических поперечных реакций

(2)

(3)

(4)

(1a)

(2a)

(2a)

16 Окончательный вид

Окончательный вид

15. Альтернативная форма ур-й для определения поперечных реакций

Окончательный вид уравнений для определения поперечных реакций в системе координат

(1a)

(2a)

(3a)

(4a)

Уравнения для определения дополнительных поперечных реакций

(1a)

(2a)

(3a)

(4a)

17 Центр тяжести

Центр тяжести

16. Пример 1

Центр тяжести махового колеса, вес которого Р = 300 кГ, находится на расстоянии 1 мм от горизонтальной оси вала; расстояния подшипников от колеса равны между собой. Найти реакции подшипников, если вал вращается равномерно, делая n=1200 об/мин. Маховик имеет плоскость симметрии, перпендикулярную к оси вращения.

Статические реакции

Дополнительные реакции

18 Постановка задачи

Постановка задачи

17. Пример 2: постановка задачи

Вычислить добавочные динамические реакции в подшипниках А и В при вращении вокруг оси АВ однородного тонкого кругового диска CD, предполагая, что ось АВ проходит через центр диска, но вследствие неправильного рассвер-ливания втулка составляет с перпенди- куляром к плоскости диска

Дано: масса диска m = 3,27 кГ, радиус его r = 20 см, число оборотов n = 30 000 об/мин, расстояния AO = 50 см, ОВ = 30 см.

Статические реакции

19 Вычисление моментов инерции

Вычисление моментов инерции

18. Пример 2: вычисление моментов инерции. Способ 1.

20 Вычисление

Вычисление

19. Пример 2: вычисление моментов инерции. Способ 2.

21 Завершение

Завершение

20. Пример 2: завершение

22 21

21

Физический маятник

Физическим маятником называется твердое тело, вращающееся вокруг неподвижной оси под действием силы тяжести.

Рассмотрим случай, когда ось вращения горизонтальна. Проведем через центр тяжести С тела плоскость, перпендикулярную к оси вращения. Точка пересечения О этой плоскости с осью вращения называется точкой подвеса.

Диф. Ур-ие вращения тела вокруг оси z

Уравнение движения физического маятника

Случай малых колебаний

Период колебаний

23 22

22

Теорема Гюйгенса

Уравнение движения физического маятника

Уравнение движения математического маятника

Математический маятник с длиной будет двигаться как физический

Приведенная длина физического маятника

Центр качания

=

Свойство взаимности (теорема Гюйгенса): Если старый центр качания сделать новой точкой подвеса, то старая точка подвеса станет новым центром качания

Д-во:

24 23

23

Экспериментальное определение моментов инерции

1) Методом качания находят период малых колебаний

2)По т-ме Гюйгенса-Штейнера

3)Для нахождения а определяют реакцию R на штырь динамометра

«Динамика твёрдого тела»
http://900igr.net/prezentacija/fizika/dinamika-tvjordogo-tela-62132.html
cсылка на страницу

Динамика

10 презентаций о динамике
Урок

Физика

134 темы
Слайды
900igr.net > Презентации по физике > Динамика > Динамика твёрдого тела