Красноярский край
<<  Экономическое развитие современного красноярского края видеоурок Первые первопроходцы 3 класс занков  >>
Особенности сертификационных испытаний гидроагрегатов ГЭС
Особенности сертификационных испытаний гидроагрегатов ГЭС
Краткое содержание
Краткое содержание
Маневренность ГЭС по сравнению с ТЭС и условия проведения испытаний
Маневренность ГЭС по сравнению с ТЭС и условия проведения испытаний
Для примера - Воткинская ГЭС изменение нагрузки на 22 МВт за 10 сек
Для примера - Воткинская ГЭС изменение нагрузки на 22 МВт за 10 сек
При проведении сертификационных испытаний напор будет отличатся от
При проведении сертификационных испытаний напор будет отличатся от
Измерение скорости оборотов ГА
Измерение скорости оборотов ГА
На ряде крупных ГЭС давно отказались от зубчатого колеса
На ряде крупных ГЭС давно отказались от зубчатого колеса
8
8
Проверка нечувствительности первичных регуляторов
Проверка нечувствительности первичных регуляторов
10
10
Красноярская ГЭС: При имитации отклонений частоты сети на
Красноярская ГЭС: При имитации отклонений частоты сети на
12
12
При этом в соответствии с тех
При этом в соответствии с тех
Гидродинамические процессы при резком изменении нагрузки (скачок
Гидродинамические процессы при резком изменении нагрузки (скачок
Пример: ГА 100МВт Воткинская ГЭС - в верху диапазона нагрузки
Пример: ГА 100МВт Воткинская ГЭС - в верху диапазона нагрузки
Пример: ГА 500 МВт Красноярская ГЭС - в верху диапазона нагрузки
Пример: ГА 500 МВт Красноярская ГЭС - в верху диапазона нагрузки
Пример: ГА 100 МВт Воткинская ГЭС - в низу диапазона нагрузки
Пример: ГА 100 МВт Воткинская ГЭС - в низу диапазона нагрузки
Пример: ГА 500 МВт Красноярская ГЭС - в низу диапазона нагрузки
Пример: ГА 500 МВт Красноярская ГЭС - в низу диапазона нагрузки
По условиям гидроудара возможна скорость изменения нагрузки
По условиям гидроудара возможна скорость изменения нагрузки
Проверка влияния ГРАМ на выдачу первичной мощности
Проверка влияния ГРАМ на выдачу первичной мощности
Особенности сертификации высоконапорных станций на примере
Особенности сертификации высоконапорных станций на примере
Условия работы ГА в разных зонах I-зона Турбина работает относительно
Условия работы ГА в разных зонах I-зона Турбина работает относительно
385 ? 460 МВт с учётом 7% резерва первичного регулирования составит
385 ? 460 МВт с учётом 7% резерва первичного регулирования составит
Работа ГА в режиме НПРЧ во время сертификационных испытаний
Работа ГА в режиме НПРЧ во время сертификационных испытаний
25
25
Воткинская ГЭС Фактическое отклонение мощности от задания составляло
Воткинская ГЭС Фактическое отклонение мощности от задания составляло
Пожелания по доработке стандарта НПРЧ для ГЭС
Пожелания по доработке стандарта НПРЧ для ГЭС
Битва!
Битва!
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Гэс
Спасибо за внимание
Спасибо за внимание

Презентация на тему: «Особенности сертификационных испытаний гидроагрегатов ГЭС». Автор: Павел Светлорусов. Файл: «Особенности сертификационных испытаний гидроагрегатов ГЭС.pptx». Размер zip-архива: 928 КБ.

Особенности сертификационных испытаний гидроагрегатов ГЭС

содержание презентации «Особенности сертификационных испытаний гидроагрегатов ГЭС.pptx»
СлайдТекст
1 Особенности сертификационных испытаний гидроагрегатов ГЭС

Особенности сертификационных испытаний гидроагрегатов ГЭС

Докладчик: Светлорусов Павел Викторович

1

2 Краткое содержание

Краткое содержание

Маневренность ГЭС по сравнению с ТЭС и условия проведения испытаний (напор) Измерение скорости оборотов ГА Проверка нечувствительности первичных регуляторов Гидродинамические процессы при резком изменении нагрузки Проверка влияния ГРАМ на выдачу первичной мощности Особенности сертификации высоконапорных станций на примере Красноярской ГЭС Работа ГА в режиме НПРЧ во время сертификационных испытаний

2

3 Маневренность ГЭС по сравнению с ТЭС и условия проведения испытаний

Маневренность ГЭС по сравнению с ТЭС и условия проведения испытаний

(напор)

Маневренность ГЭС Быстрое включение в работу из резерва - время пуска гидроагрегата, включая синхронизацию, составляет 30...50 сек. Быстрая маневренность ГА ГЭС – это высокие по сравнению с ТЭС скорости изменения нагрузки

3

4 Для примера - Воткинская ГЭС изменение нагрузки на 22 МВт за 10 сек

Для примера - Воткинская ГЭС изменение нагрузки на 22 МВт за 10 сек

(132 % Рном в мин.)

4

5 При проведении сертификационных испытаний напор будет отличатся от

При проведении сертификационных испытаний напор будет отличатся от

номинального. Это связано с годовыми и сезонными климатическими изменениями и с необходимостью регулирования речного стока. Регулирование речного стока необходимо для различных отраслей народного хозяйства, например, для поддержания судоходства на реке, поддержание уровня для водозабора городов и т.д.

5

6 Измерение скорости оборотов ГА

Измерение скорости оборотов ГА

На Воткинской ГЭС: Для измерения частоты используется тахогенератор и 3 цифровых датчика с зубчатым колесом. В качестве основного измерения используется сигнал частоты тахогенератора, при его неисправности – усреднённый сигнал с датчиков зубчатого колеса. На Красноярской ГЭС: Для пуска гидроагрегата на холостой ход используется тахогенератор, установленный на валу гидрогенератора. Для поддержания частоты после подачи возбуждения на гидрогенератор используется сигнал частоты с трансформатора напряжения (ТН) генератора.

6

7 На ряде крупных ГЭС давно отказались от зубчатого колеса

На ряде крупных ГЭС давно отказались от зубчатого колеса

Точность измерения частоты с неё очень сильно зависит от длины ротора турбины. При его вращении появляются большие механические биения. Тахогенератор меряет не механические величины, а электрические. И преобразует их в импульсы для модулей. Самый точный - ТН генератора. Точность измерения частоты таким способом соответствует требованиям и документально подтверждена. В требованиях стандарта необходимо учитывать такие особенности измерения частоты на ГА.

7

8 8

8

Измерение тахогенератора

Измерение ТН

9 Проверка нечувствительности первичных регуляторов

Проверка нечувствительности первичных регуляторов

Воткинская ГЭС: При имитации отклонений частоты сети на ?? = ±20 мГц фиксируются противоположные по знаку каждому изменению частоты изменения мощности гидроагрегата. Фактическое отклонение мощности составило 0,6 МВт, что составляет 0,6% от Рном и укладывается в требуемый диапазон 0,33?0,67% Рном. Нечувствительность первичных регуляторов не более ±10мГц.

9

10 10

10

11 Красноярская ГЭС: При имитации отклонений частоты сети на

Красноярская ГЭС: При имитации отклонений частоты сети на

? = ±20 мГц зафиксировать противоположные по знаку каждому изменению частоты изменения мощности гидроагрегата было затруднительно. Пришлось усреднить измерения активной мощности ГА на интервале 20 сек.. что бы оценить фактическое отклонение мощности ГА, которое составило 0,5 – 1 МВт и это меньше требований стандарта. Возможно, такое поведение вызвано гидродинамическими процессами на рабочем колесе гидротурбины.

11

12 12

12

13 При этом в соответствии с тех

При этом в соответствии с тех

документацией зона нечувствительности по частоте электрогидравлического регулятора составляет ±2мГц. Далее были проанализированы тренды реального участия ГА в НПРЧ при разных настройках «мертвой полосы» и статизма первичного регулирования. Сопоставив отклонения значения активной мощности и отклонения частоты сети был сделан вывод, что величина нечувствительности первичных регуляторов не превышает ±10 мГц. Вывод: Из выше сказанного можно сделать предварительное заключение, что для высоконапорных ГЭС и ГА большой мощности существующая методика проверки нечувствительности первичных регуляторов не совсем подходит. Возможно что методику необходимо доработать.

13

14 Гидродинамические процессы при резком изменении нагрузки (скачок

Гидродинамические процессы при резком изменении нагрузки (скачок

мощности в обратную сторону)

При регулировании гидротурбин на их маневренные характеристики большое влияние оказывают такие явления как кавитация и гидроудар. Кавитация возникает из-за пульсации гидродинамического давления, которое приводит к образованию в воде микропузырьков, которые могут быть причиной разрушения металла, повышения вибрации и шума, а также снижения КПД. Гидроудар возникает при быстром изменении нагрузки в следствии изменения расхода воды через гидротурбину и, связано с изменением скорости потока воды в трубопроводах. При изменении скорости воды в трубопроводе возникают колебания давления противоположного знака, передающиеся стенкам трубопровода.

14

15 Пример: ГА 100МВт Воткинская ГЭС - в верху диапазона нагрузки

Пример: ГА 100МВт Воткинская ГЭС - в верху диапазона нагрузки

15

16 Пример: ГА 500 МВт Красноярская ГЭС - в верху диапазона нагрузки

Пример: ГА 500 МВт Красноярская ГЭС - в верху диапазона нагрузки

16

17 Пример: ГА 100 МВт Воткинская ГЭС - в низу диапазона нагрузки

Пример: ГА 100 МВт Воткинская ГЭС - в низу диапазона нагрузки

Внизу диапазона нагрузки обратное отклонение мощности в следствии гидроудара значительно ниже

17

18 Пример: ГА 500 МВт Красноярская ГЭС - в низу диапазона нагрузки

Пример: ГА 500 МВт Красноярская ГЭС - в низу диапазона нагрузки

Внизу диапазона нагрузки обратное отклонение мощности в следствии гидроудара вообще не наблюдается

18

19 По условиям гидроудара возможна скорость изменения нагрузки

По условиям гидроудара возможна скорость изменения нагрузки

гидротурбин от 150 до 500 МВт/мин в зависимости от параметров ГЭС и гидротурбин. При проведении сертификационных испытаний выполняется опыт с наибольшим отклонением частоты в 210 мГц при этом изменение мощности происходит на 7% Рном. За первые 10 секунд изменение мощности должно составить 3,5% Рном, что соответствует скорости изменения мощности: 100/100*3,5= 3,5 МВт/10сек или 21 МВт/мин. – ГА 100 МВт, Воткинская ГЭС 500/100*3,5= 17,5 МВт/10сек или 105 МВт/мин. – ГА 500 МВт. Красноярская ГЭС

19

20 Проверка влияния ГРАМ на выдачу первичной мощности

Проверка влияния ГРАМ на выдачу первичной мощности

В стандарте Обеспечение согласованной работы САРЧМ СТО 59012820.29.240.002-2010 слишком витиеватые формулировки по описанию учёта вырабатываемой первичной мощности в ГРАМ (п. 5.1.2, 5.1.3 ) . В стандарте НПРЧ для ГЭС более чёткие формулировки (п. 5.6). Желательно увязать между собой эти два стандарта общими формулировками в части требования к ГРАМ для участия в НПРЧ. Так как стандарт Согласованной работы САРЧМ был выпущен раньше, то в соответствии с ним реализовывался ГРАМ станции. На Красноярской ГЭС получилась ситуация, при которой ГА находясь в индивидуальной работе выдавал необходимую первичную мощность и отвечал требованиям стандарта НПРЧ, но при этом всю эту первичную мощность гасил ГРАМ станции т.к. не было обратной связи по первичной мощности между ГА в индивид. упр. и ГРАМ. На Воткинской ГЭС инженерное решение по реализации ГРАМ более гибкое и отвечает требованиям стандарта НПРЧ поэтому там таких проблем, которые выявились на Красноярской ГЭС не возникло.

20

21 Особенности сертификации высоконапорных станций на примере

Особенности сертификации высоконапорных станций на примере

Красноярской ГЭС

Для ГЭС характерно наличие нескольких зон работы. Это обусловлено конструктивными особенностями как ГА так и плотины ГЭС. Воткинская ГЭС номинальный напор 16,5 м – низконапорная станция Зоны работы: 0 – 35 МВт запрещённая зона работы; 35 – 100 МВт зона разрешённой работы Красноярская ГЭС номинальный напор 93 м – высоконапорная станция Высоконапорные станций имеют большее количество зон работы. В случае Красноярской ГЭС это четыре зоны работы. При этом зона нежелательной работы находится между зонами разрешённой работы и разделяет из на две, это I-зона и III, IV-зоны условно объединённые в одну. При наличии таких зон возникает необходимость проводить полный объём испытаний для каждой зоны отдельно. В стандарте надо описать методику проведения испытаний для таких типов гидроагрегатов.

21

22 Условия работы ГА в разных зонах I-зона Турбина работает относительно

Условия работы ГА в разных зонах I-зона Турбина работает относительно

спокойно. Колебание мощности генератора составляет 2-4 МВт. Длительная эксплуатация турбины в этой зоне разрешается. II-зона Наблюдаются наибольшие величины вибраций опорных частей агрегата и пульсации давления в проточной части турбины. Колебания мощности составляют 15-20 МВт. В этой зоне эксплуатация турбин длительное время не рекомендуется. III-зона Пульсация давления в проточной части, а также вибрация крышки турбины снижаются. Колебание мощности агрегата в этой зоне составляет 15-20 МВт. Эксплуатация турбины в этой зоне допускается. IV-зона Турбина работает наиболее спокойно. В этой зоне КПД турбины максимальный

22

23 385 ? 460 МВт с учётом 7% резерва первичного регулирования составит

385 ? 460 МВт с учётом 7% резерва первичного регулирования составит

420 ? 425 МВт

IV зона

7% резерв НПРЧ 7% резерв НПРЧ

III зона

II зона

Сертификационные испытания подтвердили данные технической документации и показали, что в III-зоне турбина не может выполнить требования стандарта по точности поддержания мощности 1% Рном, так же в этой зоне отмечался повышенный уровень вибрации ГА. Таким образом верхняя зона разрешённой работы оказалась очень суженной для участия в НПРЧ.

I зона

23

24 Работа ГА в режиме НПРЧ во время сертификационных испытаний

Работа ГА в режиме НПРЧ во время сертификационных испытаний

Опыты по проверке реального участия гидроагрегата в НПРЧ не выявили каких-либо особенностей по сравнению с энергоблоками ТЭС. Красноярская ГЭС Точность поддержания мощности гидроагрегата в первой зоне разрешенной работы оставалась в пределах ±1 % Pном относительно задания. Во второй зоне разрешенной работы (3 и 4 зоны) активная мощность ГА выходила за пределы ±1 % Pном. В среднем 50 раз за час на время не более 3-х секунд.

24

25 25

25

26 Воткинская ГЭС Фактическое отклонение мощности от задания составляло

Воткинская ГЭС Фактическое отклонение мощности от задания составляло

не более ±1%Рном (±2МВт).

26

27 Пожелания по доработке стандарта НПРЧ для ГЭС

Пожелания по доработке стандарта НПРЧ для ГЭС

Измерение скорости оборотов ГА. Для высоконапорных ГЭС и гидроагрегатов большой мощности существующая методика проверки нечувствительности первичных регуляторов не совсем подходит. Отразить особенности гидродинамических процессов ГА при резком изменении нагрузки (обратный скачок мощности) Желательно увязать между собой стандарт «Обеспечение согласованной работы САРЧМ» и стандарт «НПРЧ ГЭС» обоюдными ссылками друг на друга или общими формулировками в части требования к ГРАМ для участия в НПРЧ. В стандарте надо описать методику проведения испытаний для гидроагрегатов с несколькими зонами разрешённой работы

27

28 Битва!

Битва!

Битва!!!

Сравнение характерных особенностей

Сравнение характерных особенностей

Гэс

Тэс

28

29 Гэс

Гэс

Тэс

Время ввода в работу из резерва

Время ввода в работу из резерва

Быстрый ввод в работу из резерва: Характерное время 1 минута до готовности к НПРЧ

Длительный ввод в работу из резерва: Характерное время 1 час до готовности к НПРЧ

29

30 Гэс

Гэс

Тэс

Регулировочный диапазон

Регулировочный диапазон

Имеется существенная зависимость диапазона регулирования от напора и условий по водоиспользованию

Практически нет зависимости регулировочного диапазона от внешних условий

30

31 Гэс

Гэс

Тэс

Маневренность

Маневренность

До 100% pном/минуту

До 4% pном/минуту

31

32 Гэс

Гэс

Тэс

Измерение скорости оборотов турбины

Измерение скорости оборотов турбины

Измерение с тахогенератора (на валу наблюдается биение)

Измерение с зубчатого колеса на валу турбины

32

33 Гэс

Гэс

Тэс

Поведение среды

Поведение среды

Наблюдаются всплески мощности по причине особенностей реакции среды на резкие изменения нагрузки

Среда не вносит возмущений при резких изменениях нагрузки

33

34 Гэс

Гэс

Тэс

Нечувствительность

Нечувствительность

На высоконапорных ГЭС проблемно измерить нечувствительность по стандартной методике

10мГц практически везде нет зависимости от Pном

34

35 Гэс

Гэс

Тэс

Непрерывность диапазона регулирования

Непрерывность диапазона регулирования

На высоконапорных ГЭС имеются зоны неразрешенной работы, разбивающие диапазон

Диапазон регулирования непрерывный

35

36 Гэс

Гэс

Тэс

Размер резерва нпрч

Размер резерва нпрч

7% Рном

5% Рном

36

37 Гэс

Гэс

Тэс

Групповое взаимодействие

Групповое взаимодействие

Требуется обеспечить корректную совместную работу ГА и ГРАМ

Энергоблоки работают индивидуально и нет необходимости обеспечивать групповое взаимодействие

37

38 Спасибо за внимание

Спасибо за внимание

С уважением ОДС ЭНЕРГОТЕСТ.

38

«Особенности сертификационных испытаний гидроагрегатов ГЭС»
http://900igr.net/prezentacija/geografija/osobennosti-sertifikatsionnykh-ispytanij-gidroagregatov-ges-236830.html
cсылка на страницу

Красноярский край

15 презентаций о Красноярском крае
Урок

География

196 тем
Слайды
900igr.net > Презентации по географии > Красноярский край > Особенности сертификационных испытаний гидроагрегатов ГЭС