<<  Сфера, описанная около икосаэдра Сфера, описанная около додекаэдра  >>
Упражнение
Упражнение. Найдите радиус сферы, описанной около единичного икосаэдра.

Слайд 33 из презентации «Многогранники, вписанные в сферу»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Многогранники, вписанные в сферу.ppt» можно в zip-архиве размером 2246 КБ.

Похожие презентации

краткое содержание других презентаций на тему слайда

«Вписанная окружность» - Вписанная окружность. Теорема: В любой треугольник можно вписать окружность. Задача № 2. Замечания: В любом описанном четырехугольнике суммы противоположных сторон равны. 2) Не во всякий четырехугольник можно вписать окружность. Доказательство: Задача № 1. В треугольник можно вписать только одну окружность!

«Задачи по вписанной и описанной окружности» - Центр окружности. Центр описанной около треугольника окружности. Укажите центр окружности, описанной около трапеции. Меньшая сторона прямоугольника. Найдите диагональ. Найдите углы треугольника. Радиус окружности. Стороны квадратных клеток. Можно ли описать окружность около четырехугольника. Укажите центр окружности, описанной около многоугольника.

«Задачи на вписанную окружность» - Чёрный ящик. Полупериметр многоугольника. Центр вписанной в треугольник окружности. Вписанные окружности. Конкурс капитанов. Радиус. Полупериметр. Тесты. Возможные ответы. Готовые чертежи. Художник. Капитан. Решение. Вписанная окружность. Циркуль.

«Описанная окружность» - В любую ли фигуру можно вписать окружность? Четырехугольник и окружность. Как вписать \ описать нам окружность счастья? Четырехугольники. Треугольник и окружность. От чего равноудален центр окружности, описанной около треугольника? Многоугольник - вписанный. Что такое окружность? Треугольники Как возникло понятие окружность?

«Окружность вписанная в многоугольник» - Периметры отсеченных треугольников равны p1, p2, p3. Какой многоугольник называется описанным около окружности? Какая окружность называется вписанной в многоугольник? В любой правильный многоугольник можно вписать окружность. Всегда ли можно ли вписать окружность в: а) прямоугольник; б) параллелограмм; в) ромб; г) квадрат; д) дельтоид ?

«Формулы описанной и вписанной окружности» - Высота. Центр окружности. Точка пересечения. Устная работа. Выберите верное утверждение. Трапеция. Закончите предложение. Вписанная и описанная окружности. Центр описанной окружности. Работа с учебником. Углы вписанного четырехугольника. Вершины треугольника. Сумма противолежащих углов. Суммы длин противолежащих сторон.

Вписанная и описанная окружность

10 презентаций о вписанной и описанной окружности
Урок

Геометрия

40 тем