<<  Координаты точки единичной окружности Координаты точки единичной окружности  >>
Координаты точки единичной окружности

Координаты точки единичной окружности. Рассмотри треугольник ОРЕ. М(0;1). Р(x;y). Р0 (1;0). N(-1;0). Е. О. К(0;-1). Y. y. x. X. II четверть. I четверть. R=1. 300. 600. Покажем так же координаты симметричных точек. III четверть. IV четверть.

Слайд 5 из презентации «Тригонометрическая окружность»

Размеры: 720 х 540 пикселей, формат: .jpg. Чтобы бесплатно скачать слайд для использования на уроке, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Тригонометрическая окружность.ppt» можно в zip-архиве размером 268 КБ.

Похожие презентации

краткое содержание других презентаций на тему слайда

«Координаты точки» - Симметрия точки относительно оси ординат (Оу). Симметрия точки относительно оси абсцисс (Ох). В математике нет символов для неясных мыслей. Симметрия в природе. Например, все разновидности рябины, шиповник, листья клевера. Точка А (2;3) симметрична точке А ( -2;3 ), расположенной слева от оси ординат.

«Координаты вектора» - Координаты вектора. 1. Координаты вектора. A(3; 2). 1. Координаты суммы векторов равны сумме соответствующих координат. 2. Координаты разности векторов равны разности соответствующих координат. 2. Свойства координат вектора.

«Декартовы координаты» - Декарт. Координатная система на плоскости. « П р я м а я – есть кратчайшее расстояние между двумя точками». Французский философ, математик, физик, физиолог. Сапфир – способствует долголетию, делает человека красивым и добрым. Изумруд (-1;-1) Сапфир (2;2). Рене Декарт. Гиппарх. Такимобразом, основная заслуга в создании метода координат принадлежит именно Р. Декарту.

«Метод координат в пространстве» - Тема. Распознай формулы. Метод координат в пространстве. (Обобщающий урок). Решите задачи.

«Системы координат» - -Называют координатными осями. Различные примеры систем координат. Формулы перехода от декартовой системы координат к полярной: Полярная ?геодезическая система координат. Мировые линии наблюдателей Риндлера (голубые дуги гипербол) в декартовых координатах. Прямоугольная (Декартова) система координат.

«Координаты на плоскости» - Постройте треугольник. Выстрелов:5 Попадений:3 Промахов:2 Убито:2 Ранено:1 Осталось:3. Координатная плоскость (урок изучения новой темы). Постройте две перпендикулярные прямые. Отметим на координатной плоскости т.А(3;5), В(-2;8), С(-4;-3), Е(5;-5). Ход урока. Отметьте на числовом луче: А(-3), В(4), С(-0,5), Е(1,8), М(3,1), К(-1).

Тригонометрия

21 презентация о тригонометрии
Урок

Геометрия

40 тем