Тригонометрия
<<  Ты, я и тригонометрия Тригонометрические уравнения  >>
Тригонометрические уравнения
Тригонометрические уравнения
Формулы корней простых тригонометрических уравнений
Формулы корней простых тригонометрических уравнений
А) cosx = 0,5 б) sinx = 0,8 в) cosx = -3 г) tg (3x – 4) = -1 д)
А) cosx = 0,5 б) sinx = 0,8 в) cosx = -3 г) tg (3x – 4) = -1 д)
Мои встречи:
Мои встречи:
Уравнения и способы их решения: Однородные уравнения 1 степени
Уравнения и способы их решения: Однородные уравнения 1 степени
Однородные уравнения 1 степени
Однородные уравнения 1 степени
Однородные уравнения 2 степени
Однородные уравнения 2 степени
Уравнения, сводящиеся к квадратным
Уравнения, сводящиеся к квадратным
Уравнения, сводящиеся к однородным уравнениям 2 степени
Уравнения, сводящиеся к однородным уравнениям 2 степени
Уравнения, решаемые разложением на множители
Уравнения, решаемые разложением на множители
Упростите выражения:
Упростите выражения:
Уравнения, решаемые с применением формул приведения
Уравнения, решаемые с применением формул приведения
Cos?х = ctgх = sin
Cos?х = ctgх = sin
Домашнее задание: уравнения с карточки, которые не решены на
Домашнее задание: уравнения с карточки, которые не решены на

Презентация: «Тригонометрические уравнения». Автор: user. Файл: «Тригонометрические уравнения.ppt». Размер zip-архива: 1966 КБ.

Тригонометрические уравнения

содержание презентации «Тригонометрические уравнения.ppt»
СлайдТекст
1 Тригонометрические уравнения

Тригонометрические уравнения

Практикум

Презентацию полготовила: Пеуша С. Г., учитель математики МОУ «Нововилговская СОШ №3»

2 Формулы корней простых тригонометрических уравнений

Формулы корней простых тригонометрических уравнений

Tgt = а, аєr

T = arctg а + ?k‚ kєz

Ctgt = а, аєr

T = arcctg а + ?k‚ kєz

Cost = а , где |а| ? 1

Sint = а, где | а |? 1

Или

Или

Частные случаи

Частные случаи

Сost = 0 t = ?/2+?k‚ kєz

sint = 0 t = 0+?k‚ kЄZ

Сost = 1 t = 0+2?k‚ kєz

sint = 1 t = ?/2+2?k‚ kЄZ

Сost = -1 t = ?+2?k‚ kєz

sint = - 1 t = - ?/2+2?k‚ kЄZ

3 А) cosx = 0,5 б) sinx = 0,8 в) cosx = -3 г) tg (3x – 4) = -1 д)

А) cosx = 0,5 б) sinx = 0,8 в) cosx = -3 г) tg (3x – 4) = -1 д)

№1 Решите уравнения:

4 Мои встречи:

Мои встречи:

1встреча – 9 : 00 2 встреча – 11:00 3 встреча – 13:00 4 встреча – 15:00 5 встреча – 17:00 6 встреча - 19:00

5 Уравнения и способы их решения: Однородные уравнения 1 степени

Уравнения и способы их решения: Однородные уравнения 1 степени

Однородные уравнения 2 степени Уравнения, сводящиеся к квадратным Уравнения, сводящиеся к однородным Уравнения, решаемые разложением на множители Уравнения, решаемые с применением формул приведения ? Гимнастика для глаз по Норбекову - YouTube.htm

6 Однородные уравнения 1 степени

Однородные уравнения 1 степени

Определение: Уравнение вида аsinx + bcosx = 0, где а и в – числа, отличные от нуля, называется однородным уравнением первой степени. Способ решения: Делением обеих частей уравнения на sinx =0 или cosx = 0 Ответ: к – целое число

7 Однородные уравнения 2 степени

Однородные уравнения 2 степени

Определение: Уравнение вида аsin? x + bsinxcosx + c cos? x = 0, где а, в и с – числа (а = 0), называется однородным уравнением второй степени. Способ решения: Делением обеих частей уравнения на sin? x = 0 или cos? x = 0 Ответ: где к – целое число

8 Уравнения, сводящиеся к квадратным

Уравнения, сводящиеся к квадратным

Уравнение вида: аsin? x + bsinx + c = 0 аcos? x + вcosx + c = 0 atg? x + btgx + c = 0 actg? x + bctgx + c = 0 где а, в и с – числа (а = 0) Способ решения: замена тригонометрической функции на t Важные формулы: cos?x = 1 – sin?x или sin?x = 1 – cos?x Ответ: , где к – целое число

9 Уравнения, сводящиеся к однородным уравнениям 2 степени

Уравнения, сводящиеся к однородным уравнениям 2 степени

Определение: Уравнение вида аsin? x + bsinxcosx + c cos? x = d, где а, в, с и d – числа (а, d = 0), называется неоднородным уравнением. Способ решения: используя основное тригонометрическое тождество cos?x + sin?x = 0 приводят к однородному уравнению 2 степени. Ответ: ,где к – целое число

10 Уравнения, решаемые разложением на множители

Уравнения, решаемые разложением на множители

Способ решения: зная, что произведение нескольких множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0 и, используя различные способы разложения на множители. Ответ: , где к – целое число

11 Упростите выражения:

Упростите выражения:

12 Уравнения, решаемые с применением формул приведения

Уравнения, решаемые с применением формул приведения

Ответ: где n – целое число

13 Cos?х = ctgх = sin

Cos?х = ctgх = sin

х = tgх = ctg ? x + 1 = sin = tg?x + 1= ctgx*tgx= ctg основное тригонометрическое тождество

Математический диктант

14 Домашнее задание: уравнения с карточки, которые не решены на

Домашнее задание: уравнения с карточки, которые не решены на

самостоятельной работе.

«Тригонометрические уравнения»
http://900igr.net/prezentacija/geometrija/trigonometricheskie-uravnenija-213921.html
cсылка на страницу
Урок

Геометрия

40 тем
Слайды
900igr.net > Презентации по геометрии > Тригонометрия > Тригонометрические уравнения