Тригонометрия
<<  Теорема Фалеса Решение тригонометрических уравнений  >>
Урок на тему: Теорема Фалеса
Урок на тему: Теорема Фалеса
Цель и задача урока
Цель и задача урока
Фалес
Фалес
Фалес считается родоначальником античной и, как следствие, европейской
Фалес считается родоначальником античной и, как следствие, европейской
Теорема Фалеса
Теорема Фалеса
Доказательство:
Доказательство:
Теорема Фалеса
Теорема Фалеса
Доказательство:
Доказательство:
Применение теоремы Фалеса к решению задач
Применение теоремы Фалеса к решению задач
Доказательство:
Доказательство:
Задача 1
Задача 1
Решение:
Решение:
Задача 2
Задача 2
Решение:
Решение:
Задача 3
Задача 3
Решение:
Решение:
Заключение:
Заключение:

Презентация: «Урок на тему: Теорема Фалеса». Автор: Пукля. Файл: «Урок на тему: Теорема Фалеса.ppt». Размер zip-архива: 219 КБ.

Урок на тему: Теорема Фалеса

содержание презентации «Урок на тему: Теорема Фалеса.ppt»
СлайдТекст
1 Урок на тему: Теорема Фалеса

Урок на тему: Теорема Фалеса

Автор: Дятченко Татьяна Юрьевна Учитель математики ГОУ СОШ № 15

2 Цель и задача урока

Цель и задача урока

Цель данного урока знакомство с жизнедеятельностью философа и мыслителя Фалеса и его теоремой; развитие «геометрического зрения», расширение кругозора в плане знакомства с историей развития математики. Задачи: - продемонстрировать возможности применения теоремы Фалеса в различных геометрических задачах - расширить представления о сферах применения полученных математических знаний; - познакомиться с историческими сведениями об ученом Фалесе, о развитии математических знаний и их применениях

3 Фалес

Фалес

Фалес из Милета - первый древнегреческий мыслитель. По-видимому, он жил в 640-546 годах до н.э. Он первый применил доказательство теорем и ввел их в обиход математики. Основатель милетской школы. Считался первым из Семи мудрецов Греции.

4 Фалес считается родоначальником античной и, как следствие, европейской

Фалес считается родоначальником античной и, как следствие, европейской

философии и науки. Считался первым из Семи мудрецов Греции. Важнейшей заслугой Фалеса в области математики должно быть перенесенное им из Египта в Грецию первых начал теоретической элементарной геометрии. Эвдем, по свидетельству Прокла, приписывает Фалесу открытие следующих геометрических предложений: ? Вертикальные углы равны. ? Углы при основании равнобедренного треугольника равны. ? Треугольник определяется стороной и прилежащими к ней двумя углами. ? Диаметр делит круг на две равные части.

5 Теорема Фалеса

Теорема Фалеса

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне

6 Доказательство:

Доказательство:

Пусть А3ОВ3 – заданный угол, а А1В1, А2В2, и А3В3– попарно параллельные прямые и А1А2=А2А3. Докажем, что В1В2=В2В3. Проведем через точку В2 прямую С1С2 параллельную прямой А1А3. По лемме А1А2 =С1В2, А2А3 = В2С2 и с учетом условия теоремы С1В2 = В2С2. Кроме того, ?В1С1В2 = ?В2С2В33– как внутренние накрест лежащие при параллельных прямых А1В1, А3В3 и секущей С1С2 , а ?В1В2С1 = ?С2В2В3 как вертикальные. По второму признаку равенства треугольников ?В1С1В2 = ?В3С2В2. Отсюда В1В2 = В2В3. Теорема доказана.

7 Теорема Фалеса

Теорема Фалеса

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные между собой отрезки.

8 Доказательство:

Доказательство:

Пусть на прямой l 1 отложены равные отрезки A1A2, A2A3, А3А4 и через их концы проведены параллельные прямые, которые пересекают прямую l 2 в точках B1, B2, B3, В4 как рисунке 4. Требуется доказать, что отрезки B1B2, B2B3, В3В4 равны друг другу. Докажем, что B1B2=B2B3. Рассмотрим случай, когда прямые l 1 и l 2 параллельны. Тогда A1A2=B1B2 и A2A3=B2B3 как противоположные стороны параллелограммов A1B1B2A2 и A2B2B3A3. Так как A1A2= A2A3, то и B1B2=B2B3. Теорема доказана.

9 Применение теоремы Фалеса к решению задач

Применение теоремы Фалеса к решению задач

Средняя линия треугольника Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине.

10 Доказательство:

Доказательство:

Пусть отрезок DE – средняя линия в треугольнике ABC, т.е. AE = EC, CD = BD. Проведем через точку D прямую a, параллельную стороне AB. По теореме Фалеса прямая a пересекает сторону AC в ее середине и, следовательно, содержит среднюю линию DE. Значит, средняя линия DE параллельна стороне AB. Проведем среднюю линию DF. Она параллельна стороне AC. Тогда по лемме отрезок ED равен отрезку AF и равен половине отрезка AB. Теорема доказана.

11 Задача 1

Задача 1

Дан треугольник АВС. На стороне ВС взята точка Р так, что ВР=РС, а на стороне АС взята точка Q такая , что АQ : QС = 5 : 3. Найдите отношение АО : ОР, если точка О – точка пересечения прямых АР и ВQ.

12 Решение:

Решение:

Проведем прямые параллельные ВQ через точки А, Р и С. Точка D – это точка пересечения прямых АР и с. По теореме Фалеса параллельные прямые ВQ, b и c, которые отсекают равные отрезки ВР и РС, отсекают равные отрезки ОР и РD на прямой АD. По теореме Фалеса параллельные прямые a, BQ и с, которые отсекают на прямой АС отрезки в соотношении 5 : 3, отсекают и на прямой АD отрезки в соотношении 5 : 3. То есть AQ : QC= 5:3 и AO : OD = 5:3, а отрезок OD=2OP. Следовательно, AO : OP = 10:3. Ответ: 10 : 3.

13 Задача 2

Задача 2

Разделите отрезок АВ при помощи циркуля и линейки на n равных частей.

14 Решение:

Решение:

Проведем луч AX, не лежащий на прямой AB, и на нем от точки A отложим последовательно n равных отрезков АА1, А1А2, …,Аn-1An , т.е. на столько равных отрезков, на сколько равных частей нужно разделить данный отрезок AB. Проведем прямую AnB (точка Аn – конец последнего отрезка) и построим прямые, проходящие через точки A1, A2,…, An-1 и параллельные прямые прямой AnB. Эти прямые пересекают отрезок AB в точках B1, B2, …, Bn-1, которые по теореме Фалеса делят отрезок AB на n равных частей.

15 Задача 3

Задача 3

Разделите данный отрезок АВ на два отрезка АХ и ХВ, пропорциональные данным отрезкам P1Q1 и P2Q2.

16 Решение:

Решение:

Проведем какой-нибудь луч АМ, не лежащий на прямой АВ, и на этом луче отложим последовательно отрезки АС и CD, равные отрезкам P1Q1 и P2Q2. Затем проведем прямую BD и прямую, проходящую через точку С параллельно прямой BD. Она по теореме Фалеса пересечет отрезок АВ в искомой точке Х.

17 Заключение:

Заключение:

В представленной работе рассмотрена теорема величайшего математика – ученого – мыслителя Фалеса, задачи, в решении которых применяется различные варианты этой теоремы. Решение геометрических задач различными способами является исследовательской частью данного урока и дает возможность сравнить разные способы решения и проанализировать их появление.

«Урок на тему: Теорема Фалеса»
http://900igr.net/prezentacija/geometrija/urok-na-temu-teorema-falesa-229826.html
cсылка на страницу
Урок

Геометрия

40 тем
Слайды
900igr.net > Презентации по геометрии > Тригонометрия > Урок на тему: Теорема Фалеса