Окружность
<<  Окружность, круг и мир вокруг Различие треугольников по длинам сторон  >>
Прямая и окружность
Прямая и окружность
Теорема
Теорема
Расстояние от центра окружности до прямой
Расстояние от центра окружности до прямой
Расстояние
Расстояние
Отрезки касательных
Отрезки касательных
Какая прямая называется касательной к окружности
Какая прямая называется касательной к окружности
Какая прямая называется пересекающей окружность
Какая прямая называется пересекающей окружность
Окружность
Окружность
В каком случае прямая касается окружности
В каком случае прямая касается окружности
Угол
Угол
В каком случае прямая и окружность пересекаются
В каком случае прямая и окружность пересекаются
Что можно сказать об отрезках касательных к окружности
Что можно сказать об отрезках касательных к окружности
Сколько касательных к данной окружности можно провести через данную точку на окружности
Сколько касательных к данной окружности можно провести через данную точку на окружности
Сколько касательных к данной окружности можно провести через данную точку
Сколько касательных к данной окружности можно провести через данную точку
Сколько можно провести окружностей, касающихся данной прямой
Сколько можно провести окружностей, касающихся данной прямой
Сколько можно провести окружностей, касающихся данной прямой в данной точке
Сколько можно провести окружностей, касающихся данной прямой в данной точке
Сколько можно провести окружностей данного радиуса
Сколько можно провести окружностей данного радиуса
Может ли прямая иметь с окружностью три общие точки
Может ли прямая иметь с окружностью три общие точки
Взаимное расположение прямой и окружности
Взаимное расположение прямой и окружности
Наибольшее расстояние
Наибольшее расстояние
Вид треугольника
Вид треугольника
Упражнение 10
Упражнение 10
Точка M
Точка M
Сумма
Сумма
Сколько можно провести прямых, касающихся двух данных окружностей
Сколько можно провести прямых, касающихся двух данных окружностей
Отрезки
Отрезки
Решение
Решение
Стороны клеток
Стороны клеток
Найдите длину отрезка AB касательной
Найдите длину отрезка AB касательной
Проведите касательную к данной окружности
Проведите касательную к данной окружности
На клетчатой бумаге из точки A проведите касательные
На клетчатой бумаге из точки A проведите касательные
Касательные к данной окружности
Касательные к данной окружности

Презентация на тему: «Взаимное расположение окружностей». Автор: *. Файл: «Взаимное расположение окружностей.ppt». Размер zip-архива: 251 КБ.

Взаимное расположение окружностей

содержание презентации «Взаимное расположение окружностей.ppt»
СлайдТекст
1 Прямая и окружность

Прямая и окружность

Прямая и окружность могут:

А) не иметь общих точек;

б) иметь только одну общую точку. В этом случае прямая называется касательной к окружности. Общая точка называется точкой касания;

в) иметь две общие точки. В этом случае говорят, что прямая пересекает окружность.

2 Теорема

Теорема

Теорема 1

Если расстояние от центра окружности до прямой больше радиуса окружности, то эти прямая и окружность не имеют общих точек.

Доказательство. Пусть расстояние от центра О окружности до прямой а больше радиуса R окружности. Опустим из центра О перпендикуляр ОА на эту прямую. Тогда ОА > R. Для любой другой точки B на прямой а наклонная ОB будет больше перпендикуляра ОА и, следовательно, больше R. Таким образом, расстояние от любой точки прямой а до центра О больше R. Значит, прямая а и окружность не имеют общих точек.

3 Расстояние от центра окружности до прямой

Расстояние от центра окружности до прямой

Теорема 2

Если расстояние от центра окружности до прямой равно радиусу окружности, то эта прямая является касательной к окружности.

Доказательство. Пусть расстояние от центра О окружности до прямой а равно радиусу R окружности. Опустим из центра О перпендикуляр ОА на эту прямую. Тогда ОА = R. Для любой другой точки B на прямой а наклонная ОB будет больше перпендикуляра ОА и, следовательно, больше R. Таким образом, расстояние от любой точки прямой а, отличной от А, до центра О больше R. Значит, прямая а и окружность имеют одну общую точку А, т.е. прямая касается окружности.

4 Расстояние

Расстояние

Теорема 3

Если расстояние от центра окружности до прямой меньше радиуса окружности, то прямая и окружность пересекаются.

Доказательство этой теоремы выходит за рамки школьного курса геометрии.

5 Отрезки касательных

Отрезки касательных

Теорема 4

Отрезки касательных, проведенных к окружности из одной точки, равны.

Доказательство. Рассмотрим две касательные к окружности с центром в точке О, проведенные из точки А и касающиеся окружности в точках В и С. Треугольники АОВ и АОС прямоугольные, ОВ=ОС и сторона АО общая. По признаку равенства прямоугольных треугольников (по катету и гипотенузе), они равны. Следовательно, АВ=АС.

6 Какая прямая называется касательной к окружности

Какая прямая называется касательной к окружности

Вопрос 1

Какая прямая называется касательной к окружности?

Ответ: Касательной к окружности называется прямая, имеющая с окружностью только одну общую точку.

7 Какая прямая называется пересекающей окружность

Какая прямая называется пересекающей окружность

Вопрос 2

Какая прямая называется пересекающей окружность?

Ответ: Прямая пересекает окружность, если она имеет с окружностью две общие точки.

8 Окружность

Окружность

Вопрос 3

В каком случае прямая и окружность не имеют общих точек?

Ответ: Если расстояние от центра окружности до прямой больше радиуса окружности.

9 В каком случае прямая касается окружности

В каком случае прямая касается окружности

Вопрос 4

В каком случае прямая касается окружности?

Ответ: Если расстояние от центра окружности до прямой равно радиусу окружности.

10 Угол

Угол

Вопрос 5

Какой угол образуют касательная к окружности и радиус, проведенный в точку касания?

Ответ: 90о.

11 В каком случае прямая и окружность пересекаются

В каком случае прямая и окружность пересекаются

Вопрос 6

В каком случае прямая и окружность пересекаются?

Ответ: Если расстояние от центра окружности до прямой меньше радиуса окружности.

12 Что можно сказать об отрезках касательных к окружности

Что можно сказать об отрезках касательных к окружности

Вопрос 7

Что можно сказать об отрезках касательных к окружности, проведенных из одной точки?

Ответ: Они равны.

13 Сколько касательных к данной окружности можно провести через данную точку на окружности

Сколько касательных к данной окружности можно провести через данную точку на окружности

Упражнение 1

Сколько касательных к данной окружности можно провести через данную точку на окружности?

Ответ: Одну.

14 Сколько касательных к данной окружности можно провести через данную точку

Сколько касательных к данной окружности можно провести через данную точку

Упражнение 2

Сколько касательных к данной окружности можно провести через данную точку, расположенную: а) внутри окружности; б) вне окружности?

Ответ: а) Ни одной;

Б) две.

15 Сколько можно провести окружностей, касающихся данной прямой

Сколько можно провести окружностей, касающихся данной прямой

Упражнение 3

Сколько можно провести окружностей, касающихся данной прямой?

Ответ: Бесконечно много.

16 Сколько можно провести окружностей, касающихся данной прямой в данной точке

Сколько можно провести окружностей, касающихся данной прямой в данной точке

Упражнение 4

Сколько можно провести окружностей, касающихся данной прямой в данной точке?

Ответ: Бесконечно много.

17 Сколько можно провести окружностей данного радиуса

Сколько можно провести окружностей данного радиуса

Упражнение 5

Сколько можно провести окружностей данного радиуса, касающихся данной прямой в данной точке?

Ответ: Две.

18 Может ли прямая иметь с окружностью три общие точки

Может ли прямая иметь с окружностью три общие точки

Упражнение 6

Может ли прямая иметь с окружностью три общие точки?

Ответ: Нет.

19 Взаимное расположение прямой и окружности

Взаимное расположение прямой и окружности

Упражнение 7

Каково взаимное расположение прямой и окружности, если радиус окружности равен 3 см, а расстояние от центра окружности до прямой равно: а) 4 см; б) 3 см; в) 2 см?

Ответ: а) Не имеют общих точек;

Б) касаются;

В) пересекаются.

20 Наибольшее расстояние

Наибольшее расстояние

Упражнение 8

Расстояние d от центра окружности до прямой меньше радиуса R этой окружности. Найдите наибольшее расстояние от точек данной окружности до прямой.

21 Вид треугольника

Вид треугольника

Упражнение 9

Определите вид треугольника, изображенного на рисунке, если MA – отрезок касательной, проведенной к данной окружности.

Ответ: Прямоугольный.

22 Упражнение 10

Упражнение 10

На рисунке MA, MB, MC - касательные. Верно ли, что MA = MB?

Ответ: Да.

23 Точка M

Точка M

Упражнение 11

На рисунке MA, MB, MC - касательные. В каком отношении делит точка M отрезок AB?

Ответ: 1:1.

24 Сумма

Сумма

Упражнение 12

На рисунке SH и SQ - отрезки касательных, сумма которых равна 36 см. Найдите периметр треугольника STU, где TU – касательная к данной окружности.

Ответ: 36 см.

25 Сколько можно провести прямых, касающихся двух данных окружностей

Сколько можно провести прямых, касающихся двух данных окружностей

Упражнение 13

Сколько можно провести прямых, касающихся двух данных окружностей, изображенных на рисунке?

26 Отрезки

Отрезки

Упражнение 14

Докажите, что отрезки АВ и CD общих внутренних касательных к двум окружностям, равны.

27 Решение

Решение

Упражнение 15

Докажите, что отрезки АВ и CD общих пересекающихся внешних касательных к двум окружностям, равны.

Решение: MA = MC, MB = MD, как отрезки касательных, проведенных к окружности из одной точки. Следовательно, AB = CD.

28 Стороны клеток

Стороны клеток

Упражнение 16

Найдите длину отрезка AB касательной. Стороны клеток равны 1.

Ответ: 3.

29 Найдите длину отрезка AB касательной

Найдите длину отрезка AB касательной

Упражнение 17

Найдите длину отрезка AB касательной. Стороны клеток равны 1.

Ответ: 3.

30 Проведите касательную к данной окружности

Проведите касательную к данной окружности

Упражнение 18

На клетчатой бумаге через точку A проведите касательную к данной окружности.

31 На клетчатой бумаге из точки A проведите касательные

На клетчатой бумаге из точки A проведите касательные

Упражнение 19

На клетчатой бумаге из точки A проведите касательные к данной окружности.

32 Касательные к данной окружности

Касательные к данной окружности

Упражнение 20

На клетчатой бумаге из точки A проведите касательные к данной окружности.

«Взаимное расположение окружностей»
http://900igr.net/prezentacija/geometrija/vzaimnoe-raspolozhenie-okruzhnostej-66383.html
cсылка на страницу

Окружность

21 презентация об окружности
Урок

Геометрия

40 тем
Слайды
900igr.net > Презентации по геометрии > Окружность > Взаимное расположение окружностей