Сокращенное умножение
<<  Умножение разности двух выражений на их сумму Возведение в куб суммы и разности двух выражений  >>
Квадрат суммы и квадрат разности двух выражений
Квадрат суммы и квадрат разности двух выражений
Математик Ф.Журден (1876 – 1958) сказал:
Математик Ф.Журден (1876 – 1958) сказал:
Входной контроль
Входной контроль
Лаборатория теоретиков
Лаборатория теоретиков
Лаборатория теоретиков «Третий лишний»
Лаборатория теоретиков «Третий лишний»
Лаборатория теоретиков «Третий лишний»
Лаборатория теоретиков «Третий лишний»
Лаборатория раскрытия тайн Вставьте пропущенные знаки:
Лаборатория раскрытия тайн Вставьте пропущенные знаки:
Вставьте пропущенные знаки:
Вставьте пропущенные знаки:
1) (4а
1) (4а
Замените звездочки такими одночленами, чтобы образовалось тождество
Замените звездочки такими одночленами, чтобы образовалось тождество
Лаборатория исследований Найдите ошибки:
Лаборатория исследований Найдите ошибки:
(А+b+с )
(А+b+с )
Квадрат суммы трехчлена
Квадрат суммы трехчлена
(а+b+с )
(а+b+с )
Лаборатория формул Соедините равные выражения
Лаборатория формул Соедините равные выражения
Соедините равные выражения
Соедините равные выражения
Задание - экзамен
Задание - экзамен
№1
№1
Задание на дом
Задание на дом
А теперь, ребята, продолжите предложение:
А теперь, ребята, продолжите предложение:
Математик Ф.Журден (1876 – 1958) сказал:
Математик Ф.Журден (1876 – 1958) сказал:

Презентация на тему: «Квадрат суммы и квадрат разности двух выражений». Автор: . Файл: «Квадрат суммы и квадрат разности двух выражений.ppt». Размер zip-архива: 2726 КБ.

Квадрат суммы и квадрат разности двух выражений

содержание презентации «Квадрат суммы и квадрат разности двух выражений.ppt»
СлайдТекст
1 Квадрат суммы и квадрат разности двух выражений

Квадрат суммы и квадрат разности двух выражений

Алгебра 7 класс Учитель математики Филиппова Н.Г. МБОУ Бейская СОШИ 2014

2 Математик Ф.Журден (1876 – 1958) сказал:

Математик Ф.Журден (1876 – 1958) сказал:

“Сущность формулы заключается в том, что она есть выражение постоянного правила, которому подчинены переменные количества”.

3 Входной контроль

Входной контроль

1) Прочитайте выражения: а)х2-(4у)2; б) 2ху; в) (3х)2 + (4у)2; г) (а – 2в)2; д) 2(m?5n); е)(с-5d)(c+5d). 2) Возведите в квадрат: а) 5у б) 0,4х2у3 в) ?х3у 3) Найдите удвоенное произведение выражений: 3х и 0,4х3у2 4) Решите уравнение: а) х2 – 16 = 0; б) х2 + 16 = 0 5) Вычислите: а) (50 – 2)(50 + 2) б) 2482 – 2472 в) 202 ? 198

4 Лаборатория теоретиков

Лаборатория теоретиков

Что называют одночленом? Что называют многочленом? Какие слагаемые называют подобными? Как привести подобные слагаемые? Как перемножить одночлены? Как умножить одночлен на многочлен? Как умножить многочлен на многочлен? Как умножить две степени с одинаковыми основаниями? Как возвести степень в степень? Чему равен квадрат суммы двух выражений? Чему равен квадрат разности двух выражений Чему равно произведение разности и суммы двух выражений? Какое выражение называют тождеством?

5 Лаборатория теоретиков «Третий лишний»

Лаборатория теоретиков «Третий лишний»

5?

25

10

5а?

25а?

(5а) ?

(m + n)?

(m + n)(m + n)

m? + n?

(x– y)?

(x – y)(x + y)

(x – y)(x – y)

(8 – 3)?

(8 – 3)?

55

(– b)?

b?

– b?

(a – b)?

(– a – b)?

(b – a)?

В каждой строке найдите лишнее выражение

В каждой строке найдите лишнее выражение

В каждой строке найдите лишнее выражение

6 Лаборатория теоретиков «Третий лишний»

Лаборатория теоретиков «Третий лишний»

5?

25

25а?

(5а) ?

(m + n)?

(m + n)(m + n)

(x– y)?

(x – y)(x – y)

(8 – 3)?

(8 – 3)?

(– b)?

b?

(a – b)?

(b – a)?

В каждой строке найдите лишнее выражение

В каждой строке найдите лишнее выражение

В каждой строке найдите лишнее выражение

7 Лаборатория раскрытия тайн Вставьте пропущенные знаки:

Лаборатория раскрытия тайн Вставьте пропущенные знаки:

1) (2a – 3n)(2a + 3n) = 4a?…6an…6an…9n? 2) (c? + d?)(c? + d?) = c?…c?d?…c?d?…d? 3) (?d – 2a)(?d + 2a) =?d?…4a? 4) (4m?-5n?)?=16m?…25n?… 20m?n? 5) 81x? -18x?y…y?=(y…9x?)?

8 Вставьте пропущенные знаки:

Вставьте пропущенные знаки:

1) (2a – 3n)(2a + 3n) = 4a?-6an-6an+9n? 2) (c? + d?)(c? + d?) = c?+c?d?+c?d?+d? 3) (?d – 2a)(?d + 2a) =?d?-4a? 4) (4m?-5n?)?=16m?+25n?-20m?n? 5) 81x? -18x?y+y?=(y-9x?)?

9 1) (4а

1) (4а

+ * )? = * + * + 25m? 2) ( * - * )? = 16 х? - * + 49у?х? 3) ( * - 4x )( * + * ) = 9b? - * 4) ( 7y? - * )?= * - * + 81b? 5) ( * + * ) = 25x?? + * + 121x?y?

Лаборатория раскрытия тайн Замените звездочки такими одночленами, чтобы образовалось тождество

10 Замените звездочки такими одночленами, чтобы образовалось тождество

Замените звездочки такими одночленами, чтобы образовалось тождество

1) (4а?+5m)?=16a?+40a?m+25m? 2) (4x? - 7y?x?)?=16 х? - 56x?y? + 49у?х? 3) (3b-4x)(3b+4x)=9b?-16x? 4) (7y?-9b?)?=49y??-126y?b?+81b? 5) (5x?+11xy?)? =25x??+110x?y?+121x?y?

11 Лаборатория исследований Найдите ошибки:

Лаборатория исследований Найдите ошибки:

1) (х – у)(х + у) = х? + ху – ух + у ? = х ? + у ? 2) (9– к)(9 – к) = 18 – 9к – 9к – к ? = 18 – к? 3) (4 + 5)? = 4? + 5? =16+25=41 4) (3х7)? = 6х14 5) (5х-2у)? = 25х2 - 4у2

12 (А+b+с )

(А+b+с )

Найти квадрат суммы трехчлена

13 Квадрат суммы трехчлена

Квадрат суммы трехчлена

(а+b+с )?= =а?+b?+с?+2аb+2ас+2bс Аналогично: (а+b+с+d )? = а?+ b?+ с?+ d?+ +2аb+2ас+2ad+2bс+2bd+2cd

14 (а+b+с )

(а+b+с )

=а?+b?+с?+2аb+2ас+2bс Аналогично: (а+b+с+d )? = а?+ b?+ с?+ d?+ +2аb+2ас+2ad+2bс+2bd+2cd

Квадрат суммы трех выражений равен сумме квадратов трех выражений, сложенной с суммой удвоенных произведений каждых двух выражений

15 Лаборатория формул Соедините равные выражения

Лаборатория формул Соедините равные выражения

A? + 2ab + b? 25 – 10c + с? (c – d)? (a + b)? (5 – c)? c? – 2cd + d? m? - 2mn + n? r?- s? 36 – 36d + 9d? (n – m)? (r-s)(r+s) (6 – 3d)?

16 Соедините равные выражения

Соедините равные выражения

a? + 2ab + b? 25 – 10c + d? (c – d)? (a + b)? (5 – c)? c? – 2cd + d? m? - 2mn + n? r?- s? 36 – 36c + 9d? (n – m)? (r-s)(r+s) (6 – 3d)?

17 Задание - экзамен

Задание - экзамен

Выполнение теста

18 №1

№1

№2

№3

№4

№5

1 вариант

2

3

1

1

4

2 вариант

1

2

3

3

1

19 Задание на дом

Задание на дом

Преобразовать в многочлен стандартного вида: (a + b - c)2 ; (a - b + c)2 ; (a - b - c)2 ; (- а – в -с)? (a + b)3 ; (a – b)3

20 А теперь, ребята, продолжите предложение:

А теперь, ребята, продолжите предложение:

Сегодня на уроке я научился… Сегодня на уроке мне понравилось… Сегодня на уроке я повторил… Сегодня на уроке я закрепил… Сегодня на уроке я поставил себе оценку …

21 Математик Ф.Журден (1876 – 1958) сказал:

Математик Ф.Журден (1876 – 1958) сказал:

: “Сущность формулы заключается в том, что она есть выражение постоянного правила, которому подчинены переменные количества”.

«Квадрат суммы и квадрат разности двух выражений»
http://900igr.net/prezentacija/matematika/kvadrat-summy-i-kvadrat-raznosti-dvukh-vyrazhenij-134615.html
cсылка на страницу
Урок

Математика

71 тема
Слайды
900igr.net > Презентации по математике > Сокращенное умножение > Квадрат суммы и квадрат разности двух выражений