Общество
<<  Что такое экономика Мир знакомых и незнакомых людей  >>
Монета и кость
Монета и кость
Цель:
Цель:
Многие важные и нужные факты первоначально были получены с помощью
Многие важные и нужные факты первоначально были получены с помощью
Монета
Монета
Монета часто помогала людям с ложной ситуации сделать выбор,
Монета часто помогала людям с ложной ситуации сделать выбор,
Математическая монета, используемая в теории вероятностей, лишена
Математическая монета, используемая в теории вероятностей, лишена
Математическая монета считается симметричной
Математическая монета считается симметричной
Игральные кости
Игральные кости
Раннее упоминание о костях в древнеинтдийской поэзии отражают
Раннее упоминание о костях в древнеинтдийской поэзии отражают
Правильные (симметричные кости) обеспечивают одинаковые шансы
Правильные (симметричные кости) обеспечивают одинаковые шансы
Поддельные кости
Поддельные кости
Выводы:
Выводы:
Не только в прошлом, но и в настоящее время позволяют проводит
Не только в прошлом, но и в настоящее время позволяют проводит
Ресурсы:
Ресурсы:

Презентация: «Монета и кость». Автор: student. Файл: «Монета и кость.ppt». Размер zip-архива: 1087 КБ.

Монета и кость

содержание презентации «Монета и кость.ppt»
СлайдТекст
1 Монета и кость

Монета и кость

Выполнили учащиеся 11физмат класса ГПЛИ Гвоздев Алексей Алпатов Артур

2 Цель:

Цель:

Рассмотреть, как появились понятия «орел» и «решка» Заглянуть в историю возникновения инструментов Выяснить, в чем различия между настоящими и математическими монетами и игральными костями

3 Многие важные и нужные факты первоначально были получены с помощью

Многие важные и нужные факты первоначально были получены с помощью

очень большого числа очень простых опытов. Большую роль в развитии теории вероятностей как науки сыграли обычные монеты и игральные кости.

4 Монета

Монета

Орел

Решка

Монета с точки зрения теории вероятностей имеет только две стороны, одна из которых называется "орел", а другая — "решка". Монету бросают, и она падает одной из сторон вверх. Никакие другие свойства математической монете не присущи.

Название "орел" для обратной стороны (реверса) монеты происходит оттого, что на реверсе российских монет изображен герб Российского государства — двуглавый орел. Впервые орел на монетах появился при великом князе Иване III.

Название "решка" для лицевой стороны (аверса) монеты возникло потому, что рисунок на аверсе российских монет в XVIII-XIX вв. напоминал решетку, на фоне которой был написан номинал монеты (ее достоинство).

5 Монета часто помогала людям с ложной ситуации сделать выбор,

Монета часто помогала людям с ложной ситуации сделать выбор,

положившись на судьбу. В пьессе А.Н. Островского «Бесприданница» есть епизод, когда купцы Кнуров и Возжеватов с помощью игры в орлянку решают, кому достанется Лариса

ВОЖЕВАТОВ. Да вот, лучше всего. (Вынимает из кармана монету и кладет под руку.) Орел или решетка? КНУРОВ (в раздумье). Если скажу: орел, так проиграю; орел, конечно, вы. (Решительно.) Решетка. ВОЖЕВАТОВ (поднимая руку). Ваше. Значит, мне одному в Париж ехать. Я не в убытке; расходов меньше.

6 Математическая монета, используемая в теории вероятностей, лишена

Математическая монета, используемая в теории вероятностей, лишена

многих качеств настоящей монеты. У математической монеты нет цвета, размера, веса и достоинства. Она не сделана ни из какого материала и не может служить платежным средством.

7 Математическая монета считается симметричной

Математическая монета считается симметричной

Это означает, что брошенная на стол монета имеет равные шансы выпасть "орлом" или "решкой". При этом подразумевается, что никакой другой исход бросания монеты невозможен, — она не может потеряться, закатившись в угол, и, тем более, не может "встать на ребро". Настоящая металлическая монета служит лишь иллюстрацией для математической монеты. Настоящая монета может быть немного вогнутой, может иметь другие дефекты, которые влияют на результаты бросания. Тем не менее, чтобы проверить на практике опыты с бросанием математической монеты, мы бросали, бросаем и будем бросать обычную монету (без явных дефектов).

8 Игральные кости

Игральные кости

Игральный кубик или игральная кость также служит прекрасным средством для получения случайных событий. Игральная кость имеет удивительную историю. Игра в кости — одна из древнейших. Она была известна в глубокой древности в Индии, Китае, Лидии, Египте, Греции и Риме. Игральные кости в виде кубиков находили в Египте (XX в. до н. э.) и в Китае (VI в. до н. э.) при раскопках древних захоронений. Точки на гранях древнеегипетских костей часто изображались в виде птичьего глаза.

9 Раннее упоминание о костях в древнеинтдийской поэзии отражают

Раннее упоминание о костях в древнеинтдийской поэзии отражают

популярность игры в кости в Древней Индии. «Гимн игрока» - первый литературный текст, упоминающий кости, изображает их как враждебную человеку магическую стихию:

Ведь кости усеяны колючками и крючками, Они порабощают, они мучают, испепеляют, Одаряют, как ребёнок, победителя они вновь лишают победы. Неудачливый игрок пытается заклясть кости, заключает с ними мир: Заключите с нами дружбу! Помилуйте нас!

10 Правильные (симметричные кости) обеспечивают одинаковые шансы

Правильные (симметричные кости) обеспечивают одинаковые шансы

выпадения каждой грани. Для этого все грани должны иметь одинаковую площадь, быть плоскими и одинаково гладкими. Вершины и ребра кубиков должны иметь правильную форму. Если они скруглены, то все скругления должны быть одинаковыми. Отверстия, маркирующие очки на гранях, должны быть просверлены на одинаковую глубину. Сумма очков на противоположных гранях правильной кости равна 7

Математическая игральная кость, которая обсуждается в теории вероятностей, — это математический образ правильной кости. Выпадения всех граней равновозможны. Подобно математической монете, математическая кость не имеет ни цвета, ни размера, ни веса, ни иных материальных качеств.

11 Поддельные кости

Поддельные кости

Все рассуждения о равных вероятностях выпадения различных комбинаций справедливы, если кость имеет кубическую форму и ее центр тяжести совпадает с геометрическим центром. Изменение формы или смещение центра тяжести меняет свойства кости. Кости неправильной формы — самый обычный тип шулерских костей. Иногда в кости вплавляют свинцовые шарики, в них делают замаскированные пустоты, каналы, по которым переливается ртуть. Нарушить равновозможность выпадения граней можно, сделав некоторые грани чуть выпуклыми, а другие — чуть вогнутыми. Достаточно сделать одни из граней более гладкими, чем другие. Все эти способы предназначены для изменения вероятностей выпадения очков.

12 Выводы:

Выводы:

Узнали об истории названий "орел" и "решка" и об игральных костях Выяснили, чем отличаются настоящие математические монеты и кости от настоящих Узнали, как отличить настоящую игральную кость от поддельной

13 Не только в прошлом, но и в настоящее время позволяют проводит

Не только в прошлом, но и в настоящее время позволяют проводит

вероятностные эксперименты и делать выводы о тех или иных событиях

Монеты и кости

14 Ресурсы:

Ресурсы:

Ю.Н.Тюрин, А.А.Макаров, И.Р.Высоцкий, И.В.Ященко «Теория вероятностей и математическая статистика» http://teorver.mccme.ru А. Н. Островский "Бесприданница» Е.А. Бунимович, В.А. Булычев «Вероятность и статистика», М., «Дрофа»,2002 г, 160 с. «Школьная Энциклопедия : математика», М., «Дрофа», 1997 г, 528 с. Д.К. Фаддеев, М.С. Никулин, И.Ф. Соколовский «Элементы высшей математики для школьников», М., «Наука», 1987г

«Монета и кость»
http://900igr.net/prezentacija/okruzhajuschij-mir/moneta-i-kost-187007.html
cсылка на страницу
Урок

Окружающий мир

79 тем
Слайды