Скачать
презентацию
<<  Теоремы о непрерывных функциях Непрерывность элементарных функций  >>
Теоремы о непрерывных функциях

Теоремы о непрерывных функциях. Теорема (о непрерывности сложной функции). Пусть функция непрерывна в точке , а функция непрерывна в точке . Тогда сложная функция непрерывна в точке .

Слайд 8 из презентации «Непрерывность функции» к урокам алгебры на тему «Свойства функции»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать слайд для использования на уроке алгебры, щёлкните на изображении правой кнопкой мышки и нажмите «Сохранить изображение как...». Скачать всю презентацию «Непрерывность функции.ppt» можно в zip-архиве размером 98 КБ.

Скачать презентацию

Свойства функции

краткое содержание других презентаций о свойствах функции

«Приращение функции» - Пусть x – произвольная точка, лежащая в некоторой окрестности фиксированной точки x?. ?f = f (x? + ?x) – f (x?). Приращение функции. x = x? + ?x. Приращение аргумента. Таким образом, Откуда f (x) = f (x? +?x) = f (x?) + ?f. ?x = x –x?. Откуда следует, что. Пример №1. Говорят также, что первоначальное значение аргумента x? получило приращение ?x.

«Понятие функции» - Графики (а) и (б) образуют с осью абсцисс меньшие углы, чем (в) и (г). Индуктивный подход к введению понятия. Методическая схема изучения функции, входящей в класс. Последовательность рассмотрения частных видов квадратичной функции: y = х2, y = ах2, а?0. y = ах2 + с, а?0. y = а(х + b)2, а?0. y = а(х + b)2 + c, а?0.

«Непрерывность функции» - Первая теорема Больцано-Коши об обращении функции в нуль. Разрывы функций. Лекция 3. Например, в точке х=1 имеет разрыв 2-го рода. Пусть заданные на одном и том же множестве Х функции и непрерывны в точке . Непрерывность. Пусть функция непрерывна в точке , а функция непрерывна в точке . Тогда сложная функция непрерывна в точке .

«Функция в математике» - Если к>0 , график проходит по 1 и 3 четверти. График - прямая, строиться по двум точкам. Координатная плоскость. Функция. Линейная функция у=кх+b. ФУНКЦИЯ в математике. Функция у=х. График заданный функцией у=х является прямой и проходит через начало координат. Что такое «функция». У=х. У=2-х.

«Числовые функции» - S = a2. Простейшие примеры таких взаимозависимостей дает гео-метрия. Введение Числовые функции Кусочное задание функции График функции. Иногда функции задают различными выражениями на разных участках. Содержание: Еремина Л.А. График функции. А. Кусочное задание функций.

«Способы задания функции» - Назад. 1. Зависимость температуры воздуха t от времени суток Т. А (16;4). Существует три способа задания функции: формулой графиком Таблицей Словесный. Способы задания функции. Способ задания функции графиком. Y=2x+3 s(t)=60t c=2пr y(x)=ln X y=(x+5)/x.

Всего в теме «Свойства функции» 23 презентации
Урок

Алгебра

34 темы
Слайд 8: Теоремы о непрерывных функциях | Презентация: Непрерывность функции.ppt | Тема: Свойства функции | Урок: Алгебра