№ | Слайд | Текст |
1 |
 |
Решение комбинаторных задачПравило произведения. МОУ СОШ №12 г.о.Жуковский Московской области Богданова С.В. |
2 |
 |
Эпиграф урока«Число, место и комбинация – три взаимно перекрещивающиеся, но отличные сферы мышления, к которым можно отнести все математические идеи». Дж. Сильвестр . . 2 |
3 |
 |
Что такое комбинаторикаКомбинаторика – это раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов. Выбором объектов и расположением их в том или ином порядке приходится заниматься чуть ли не во всех областях человеческой деятельности, например конструктору, разрабатывающему новую модель механизма, ученому-агроному, планирующему распределение с/х культур на нескольких полях, химику, изучающему строение органических молекул, имеющих данный атомный состав. 3 |
4 |
 |
Из истории комбинаторикиС комбинаторными задачами люди столкнулись в глубокой древности. В Древнем Китае увлекались составлением магических квадратов. В Древней Греции занимались теорией фигурных чисел. Комбинаторные задачи возникли и в связи с такими играми, как шашки, шахматы, домино, карты, кости и т.д. Комбинаторика становится наукой лишь в 18 в. – в период, когда возникла теория вероятности. 4 |
5 |
 |
Число различных комбинаций Подсчитывали число различных комбинаций длинных и коротких слогов в стихотворных размерах, занимались теорией фигурных чисел, изучали фигуры, которые можно составить из частей и т.Д. В Древней Греции Со временем появились различные игры (нарды, карты, шашки, шахматы и т. д.) В каждой из этих игр приходилось рассматривать различные сочетания фигур, и выигрывал тот, кто их лучше изучал, знал выигрышные комбинации и умел избегать проигрышных. 5 |
6 |
 |
Лейбниц Готфрид Вильгельм Лейбниц (1.07.1646 - 14.11.1716). Леонард Эйлер(1707-1783) Рассматривал задачи о разбиении чисел, о паросочетаниях, циклических расстановках, о построении магических и латинских квадратов, положил начало совершенно новой области исследований, выросшей впоследствии в большую и важную науку—топологию, которая изучает общие свойства пространства и фигур. Комбинаторику, как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666г. Он также впервые ввел термин «Комбинаторика». 6 |
7 |
 |
Простые и наглядные методы Для вывода формул автор использовал наиболее простые и наглядные методы, сопровождая их многочисленными таблицами и примерами. Сочинение Я. Бернулли превзошло работы его предшественников и современников систематичностью, простотой методов, строгостью изложения и в течение XVIII века пользовалось известностью не только как серьёзного научного трактата, но и как учебно-справочного издания. 7 |
8 |
 |
Методы решения комбинаторных задачПравило суммы. 2. Правило произведения 3. Таблицы. 4. Графы (деревья). 5. Формулы. 8 |
9 |
 |
Правило суммыЕсли элемент А может быть выбран к1 способами, а элемент В – к2 способами, причем выборы А и В являются взаимно исключающими, то выбор «либо А, либо В» может быть осуществлен к1+к2 способами. Задача 1. Сколько существует способов выбрать кратное двум или трем число из множества чисел : 2,3,4,15,16,20,21, 75,28 ? Решение: к1=5 –кратное 2 (2,4,16,20,28), к2=4 – кратное 3 (3,15,21,75) к1+к2 = 5+4 = 9 9 |
10 |
 |
Правило произведенияЕсли элемент А может быть выбран к1 способами, а элемент В – к2 способами, то выбор «А и В» может быть осуществлен к1хк2 способами. Задача 2. а) Сколько различных двузначных чисел можно составить из цифр 1,3,5,7,9? Решение: N= 5х5 = 25 ( Если не сказано, что элемент не повторяется, то выборка с повторениями) б) Сколько среди них чисел, кратных 5? Решение: Число кратно 5, если оканчивается цифрой 5 или 0. В нашем случае – 5. На первой позиции фиксируем одну из пяти цифр, на второй – 5. N= 5х1 =5 10 |
11 |
 |
Сколько среди них чисел, кратных 11 Правило произведения. в) Сколько среди них чисел, кратных 11? Решение: Двузначное число кратно 11, если обе его цифры одинаковы. N= 5 г) Сколько среди них чисел, кратных 3? Решение: Число кратно 3, если сумма его цифр делится на 3. Составим всевозможные пары: 1 -1 3 -3 5 – 5 7 – 7 9 -9 1 -3 3 -5 5 – 7 7 – 9 1 -5 3 -7 5 -9 1 -7 3 – 9 1 – 9 Таких пар 15. Среди них 5 пар, сумма которых делится на 3, причем три пары допускают перестановку, т.е. могут образовать по два разных числа. Всего 5+3=8 различных двузначных чисел. 11 |
12 |
 |
Сколько существует способов Правило произведения. Задача 3. Сколько существует способов занять 1-ое, 2-ое и 3-е места на чемпионате по футболу, в котором участвуют а) 10 команд Решение: N=10х9х8=720 б) 11 команд? Решение: N=11х10х9х8=990 12 |
13 |
 |
Сколько различных трехзначных чисел Правило произведения. Задача 4. Сколько различных трехзначных чисел можно составить из цифр 0, 1,2,3,4, если а) цифры не повторяются? Решение: На первом месте одна из 4-х цифр ( 0 не может быть), на 2-ом – одна из оставшихся 4-х: N=4х4= 16 б) цифры могут повторяться Решение: На 1-ом месте может быть одна из 4-х цифр, на 2-ом – одна из 5 (0 входит): N=4х5= 20 13 |
14 |
 |
Флаг в виде четырех горизонтальных полос Правило произведения. Задача 5. Несколько стран в качестве символа своего государства решили использовать флаг в виде четырех горизонтальных полос, одинаковых по ширине, но разных по цвету: белый, синий, красный, зеленый. У каждой страны свой, отличный от других, флаг. а)Сколько всего стран могут использовать такую символику? Решение: Цвет верхней полосы можно выбрать одним из 4 способов, второй полосы – одним из трех оставшихся, цвет 3 полосы – одним из 2 оставшихся, а 4 – одним способом. По правилу произведения N=4х3х2х1=24 14 |
15 |
 |
Общее количество вариантов Правило произведения. б) Сколько стран могут использовать такую символику с синей и красной полосами, расположенными рядом? Решение: Две полосы, всегда расположенные рядом, можно рассматривать как одну полосу, тогда полос останется 3, из них можно составить 3х2х1=6 разных флагов. Но две полосы (синюю и красную) можно «склеить» по-разному: синяя, а под ней красная, или красная, а под ней синяя. Поэтому общее количество вариантов по правилу суммы равно 6+6=12 15 |
16 |
 |
Сколько всего стран Правило произведения. в) Сколько всего стран могут использовать такую символику с нижней белой полосой? Решение: Если фиксировать цвет нижней полосы, то цвета трех расположенных над ней полос можно выбрать 3х2х1 = 6 способами г) Сколько стран могут использовать такую символику с верхней белой полосой? Решение: Если фиксировать цвет белой полосы, то цвета следующих полос можно выбрать 3х2х1 = 6 способами. 16 |
17 |
 |
Крестики и нолики Правило произведения. X X X X 0 0 0 0 Задача 6. В клетки квадратной таблицы 2х2 произвольно ставят крестики и нолики. а) Сколькими способами можно заполнить эту таблицу? Решение: Для заполнения первой клетки есть 2 способа ( крестик или нолик); для заполнения каждой последующей – тоже 2 способа; общее количество способов заполнить таблицу по правилу произведения равно 2х2х2х2=16. 17 |
18 |
 |
Разные значки Правило произведения. X 0 0 0 б) В скольких случаях в верхней левой и нижней правой будут разные значки? Решение: Если в верхней клетке – крестик, а нижней – нолик, то остальные клетки можно заполнить 2х2=4 способами. Если в верхней клетке – нолик, в нижней – крестик, то еще 4 способа заполнения. Всего 4+4=8 способов. 18 |
19 |
 |
Правилопроизведения. X X X 0 X X X 0 в) В скольких случаях в левой нижней клетке будет стоять крестик? Решение: Если в левой нижней клетке фиксируем крестик, то остальные 3 клетки можно заполнить 2х2х2=8 различными способами 19 |
20 |
 |
Сколькими способами можно посадить шестерых школьников Правило произведения. Задача 7. Сколькими способами можно посадить шестерых школьников на скамейку так, чтобы Коля и Оля оказались рядом? Решение: Будем считать, что на скамейке 6 пустых мест. Посадить Колю можно шестью способами, после чего Олю посадить рядом с ним одним или двумя способами. Это зависит от того, куда мы посадили Колю – на крайнее место или нет. 20 |
21 |
 |
Коля сидит на краю Правило произведения. Пусть Коля сидит на краю. Место на краю можно выбрать 2 способами, после чего Олю можно посадить одним способом, после чего оставшиеся 4 места можно занять 4х3х2х1 способами, значит, всего 2х1х4х3х2х2=48 способов Коля сидит где-то в середине. Место для Коли можно выбрать 4 способами, Олю можно посадить 2 способами, значит, всего 4х2х4х3х2х1=192 способами. По правилу сложения 48+192= 240 способов 21 |
22 |
 |
Четырехзначные числа Правило произведения. Задача 8. Из цифр 1,2,3,5 составили все возможные четырехзначные числа (без повторения цифр). Сколько среди них таких чисел, которые больше 2000, но меньше 5000? Решение: Выбор 1-ой цифры – 2 способа (3,4), 2-ой цифры – 3 способа, третьей – 2 способа, четвертой -1. По правилу произведения N=2х3х2х1=12 чисел. 22 |
23 |
 |
На входной двери дома установлен домофон Правило произведения. Задача 9. На входной двери дома установлен домофон, на котором нанесены цифры 0,1,2,…9.Каждая квартира получает кодовый замок из двух цифр типа 0-2, 3-7 и т.п. Хватит ли кодовых замков для всех квартир, если в доме 96 квартир? (код 0-0 не существует) Решение: Выбор 1-й цифры – 10 вариантов, 2-й –10 вариантов. Всего 10х10 – 1 = 99 вариантов Ответ: хватит. 23 |
24 |
 |
5 задач Правило произведения. Задача 10. В контрольной работе будет 5 задач – по одной из каждой пройденной темы. Задачи будут взяты из общего списка по 10 задач в каждой теме, а всего было пройдено 5 тем. При подготовке к контрольной работе Вова решил только по 8 задач в каждой теме. Найдите: а) общее число всех возможных вариантов контрольной работы Решение: Каждая задача может быть выбрана 10 способами. По правилу произведения N=10х10х10х10х10=100000 24 |
25 |
 |
Вова умеет решать все 5 задач Правило произведения. б) число тех вариантов, в которых Вова умеет решать все 5 задач Решение: N=8х8х8х8х8=32768 в) число тех вариантов, в которых Вова не сможет решить ни одной задачи Решение: N=2х2х2х2х2=32 г) число тех вариантов, в которых Вова умеет решать все задачи, кроме первой. Решение: N=2х8х8х8х8=8192 25 |
26 |
 |
Вершины правильного 10-угольника Правило произведения. Задача 11. Три вершины правильного 10-угольника покрасили в рыжий цвет, а остальные – в черный. Сколько можно провести отрезков с разноцветными концами? Решение: Первую рыжую вершину можно соединить отрезком с любой из 10 – 3 = 7 черных вершин, после этого вторую рыжую вершину можно соединить отрезком с любой из 6 оставшихся черных вершин, а третью рыжую – с любой из 5 оставшихся черных вершин. Общее число вариантов (отрезков с разноцветными концами) по правилу произведения равно: 7х6х5=210 26 |
27 |
 |
Сколько ребер имеет полный граф Правило произведения. Задача 12. Сколько ребер имеет полный граф (каждая вершина соединена с каждой), если количество его вершин 12? Решение: Первую вершину можно выбрать из 12, вторую – из 11; всего 12х11=132 пары. Но они учитывают порядок выбора (каждая пара входит дважды). Поэтому количество ребер равно 12х11:2=66 27 |
28 |
 |
Таблицы вариантовЗадача 13 Составляя расписание уроков на понедельник для 7а класса, завуч хочет первым уроком поставить либо физику, либо алгебру, а вторым – либо русский язык, либо литературу, либо историю. Сколько существует вариантов составления расписания на первые два урока? Решение: Составим таблицу вариантов: Всего существует 2х3 = 6 вариантов 1 2 Русский Литер История Физика Физика Русский физика Литер физика История физика Алгебра Алгебра Русский алгебра Литер алгебра История алгебра 28 |
29 |
 |
Сколько двузначных чисел, кратных 3 Таблицы вариантов. Задача 14 Сколько двузначных чисел, кратных 3, можно получить из цифр 1,3,5,7,9? а) цифры не повторяются - 6 вариантов (15,39,57,51,75,93) б) цифры могут повторяться – 8 вариантов (еще 33,99) 1 3 5 7 9 1 11 13 15 17 19 3 31 33 35 37 39 5 51 53 55 57 59 7 71 73 75 77 79 9 91 93 95 97 99 29 |
30 |
 |
Подсчет вариантов с помощью графовЗадача 15. При встрече каждый из друзей пожал другому руку. Сколько было рукопожатий, если друзей: а) трое ; б) четверо ; в) пятеро? N=3 N=6 N=10 30 |
31 |
 |
Специалисты обменялись визитными карточками Подсчет вариантов с помощью графов. Задача 16. По окончании деловой встречи специалисты обменялись визитными карточками. Сколько всего визитных карточек было роздано, если специалистов было а) трое ; б) четверо ; в) пятеро? N=3 N=6 N=10 31 |
32 |
 |
Сколько различных двухзначных чисел *. 22 27 29 72 77 79 92 97 99 2 7 9 2 7 9 2 7 9 9 2 7 Задача 17. Сколько различных двухзначных чисел можно записать, используя цифры 2, 7, 9 если цифры в этих числах могут повторяться? 32 |
33 |
 |
Граф-деревоЗадача 18. Маше на день рождения подарили 3 букета цветов: из роз (р), астр (а) и гвоздик (г). В доме было 2 вазы: хрустальная (х) и керамическая (к). Маша пробовала устанавливать каждый букет в каждую вазу. Перечислить все полученные сочетания букета с вазой. 33 |
34 |
 |
Виды выборокПерестановки без повторений Размещения без повторений Сочетания без повторений Размещения с повторениями (строки) Перестановки с повторениями Сочетания с повторениями Разбиения Подмножества 34 |
35 |
 |
Формулы комбинаторикиФакториал числа - произведение n первых натуральных чисел обозначается n! 5!=1*2*3*4*5=120; n!=1*2*3*…*(n-1)*n Перестановка без повторений. Задача 19. Даны цифр: 1,2,3,4,5,6,7. Сколько различных чисел можно составить из этих цифр? Каждое число является перестановкой из 7 элементов. Примеры: 1234567, 2354167, 7546321. Перестановка-упорядоченное множество. Число перестановок из n элементов вычисляют по формуле Pn=n!. По условию n=7 Так из 7 цифр можно 7!=1*2*3*4*5*6*7=5040 различных чисел. 35 |
36 |
 |
Перестановка с повторениями Формулы комбинаторики. Перестановка с повторениями. Задача 20 .Даны цифр: 1,2,2,3,3,3,4,. Сколько различных чисел можно составить из этих цифр? Каждое число является перестановкой из 7 элементов. Примеры: 1223334, 4232331,2233314. Некоторые числа при перестановке одинаковых цифр не меняется. Число таких перестановок вычисляется по формуле Pn=n!/(n1!*n2!*n3!). По условию n=7, n1=2 , n2=3 Получаем 7!/(2!*3!)=5040/12=420 различных чисел. 36 |
37 |
 |
Сочетание Формулы комбинаторики. Сочетание. Задача 21. Имеется 7 цветных карандашей. Выбирается 3 карандаша. Сколько существует способов выбрать 3 карандаша, чтобы не было повторяющихся наборов? Выборка из трёх карандашей – это сочетание из 7-ми по 3 элемента в каждом. Сочетание - неупорядоченная выборка. Число сочетаний из n элементов по m в каждом находим по формуле: Cn = n!/(m!*(n-m)!). Решение: 7!/(4!*3!)=7*6*5=210 Задача 22. В классе обучается 20 человек. Сколько существует способов выбрать актив, состоящий из 4 человек? Решение. Находим число сочетаний из 20 элементов по 4 в каждом: 20!/(4!*16!)=17*18*19*20/24=4845 способов выбрать актив. 37 |
38 |
 |
Размещение Формулы комбинаторики. Размещение. Задача 23. Буквы алфавита записаны на карточках. Выбирается 4 карточки и затем из набора составляют различные слова. Под словом будем понимать порядок следования букв. Например: плот, лотп, лпот- разные слова. Каждое полученное слово-это размещение. Размещение –упорядоченная выборка Число размещений из n элементов по m в каждом находим по формуле: An =n!/(n-m)!. Сколько слов можно получить в предложенной задаче? По формуле получаем решение 32!/(32-4)!=32!/28!=29*30*31*32=863040 38 |
39 |
 |
ИсточникиВ.Н.Студеницкая.. Решение задач по статистике, комбинаторике и теории вероятностей Разработка презентации Шаховой Т.А. из Мурманска ( оформление) «Учительский портал», ,Степушкиной Н.Ю. Спасибо!!! 39 |
«Решение комбинаторных зада» |
http://900igr.net/prezentatsii/algebra/Reshenie-kombinatornykh-zada/Reshenie-kombinatornykh-zada.html