Вероятность Скачать
презентацию
<<  Понятие вероятности Урок по теории вероятности  >>
Из истории «Теории вероятностей»
Из истории «Теории вероятностей»
Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова
Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова
Вечные истины
Вечные истины
Случайные события
Случайные события
Случай имеет свои законы
Случай имеет свои законы
Случайность и здравый смысл
Случайность и здравый смысл
В настоящее время Теория вероятностей имеет статус точной науки
В настоящее время Теория вероятностей имеет статус точной науки
Азартные игры
Азартные игры
У истоков науки
У истоков науки
Закономерности в случайных событиях
Закономерности в случайных событиях
Знаменитая задача
Знаменитая задача
Задача Паччиоли
Задача Паччиоли
Новые имена
Новые имена
Новые имена
Новые имена
Задача кавалера де Мере
Задача кавалера де Мере
Решение задачи кавалера де Мере
Решение задачи кавалера де Мере
На пути становления науки
На пути становления науки
На пути становления науки
На пути становления науки
На пути становления науки
На пути становления науки
История продолжается
История продолжается
Русский период в развитии теории вероятностей
Русский период в развитии теории вероятностей
Недалекое прошлое
Недалекое прошлое
С.Н.Бернштейн (1880 - 1968)
С.Н.Бернштейн (1880 - 1968)
А.Н.Колмогоров ( 1903 - 1987 )
А.Н.Колмогоров ( 1903 - 1987 )
А.Я. Хинчин (1894 - 1959)
А.Я. Хинчин (1894 - 1959)
Б.П.Гнеденко ( 1912-1995 )
Б.П.Гнеденко ( 1912-1995 )
Ю.В.Линник (1915 - 1972)
Ю.В.Линник (1915 - 1972)
Благодарю за внимание
Благодарю за внимание
Слайды из презентации «Теория вероятности» к уроку алгебры на тему «Вероятность»

Автор: Светочка. Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Теория вероятности.ppt» бесплатно в zip-архиве размером 1683 КБ.

Скачать презентацию

Теория вероятности

содержание презентации «Теория вероятности.ppt»
СлайдТекст
1 Из истории «Теории вероятностей»

Из истории «Теории вероятностей»

2 Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова

Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова

Юлия Руководитель проекта учитель математики ГОУ СОШ № 420 г. Москвы Афанасьева С.В.

3 Вечные истины

Вечные истины

2 х 2 = 4

Математику многие любят за ее вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных сторон.

В любой задаче, которую мы решаем на уроках математики, у всех получается один и тот же ответ – нужно только не делать ошибок в решении.

Чет. + Чет. = Чет.

4 Случайные события

Случайные события

Реальная жизнь оказывается не такой простой и однозначной. Исходы многих явлений невозможно предсказать заранее, какой бы полной информацией мы о них не располагали.

Нельзя, например, сказать наверняка, какой стороной упадет брошенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе захотят в течение ближайшего часа позвонить по телефону. Такие непредсказуемые явления называются случайными

5 Случай имеет свои законы

Случай имеет свои законы

Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений.

Именно такие закономерности изучаются в специальном разделе математики – Теории вероятностей.

6 Случайность и здравый смысл

Случайность и здравый смысл

«Теория вероятностей есть в сущности не что иное, как здравый смысл, сведенной к исчислению» Лаплас

7 В настоящее время Теория вероятностей имеет статус точной науки

В настоящее время Теория вероятностей имеет статус точной науки

наравне с арифметикой, алгеброй, геометрией, тригонометрией и т.д. Этот раздел математики уже входит в школьные учебники и весьма вероятно, что в скором времени будет включен в программу экзамена. А начиналось все весьма своеобразно…

8 Азартные игры

Азартные игры

Богатый материал для наблюдения за случайностью на протяжении многих веков давали азартные игры

9 У истоков науки

У истоков науки

В археологических раскопках специально обработанные для игры кости животных встречаются, начиная с V века до н.э.

Самый древний игральный кубик найден в Северном Ираке и относится к IV тысячелетию до н.э.

10 Закономерности в случайных событиях

Закономерности в случайных событиях

Люди, многократно следившие за бросанием игральных костей, замечали некоторые закономерности, управляющие этой игрой. Результаты этих наблюдений формулировались как «Золотые правила» и были известны многим игрокам. Однако первые вычисления появились только в X-XI веках.

11 Знаменитая задача

Знаменитая задача

Одна из самых знаменитых задач, способствовавших развитию теории вероятностей, была задача о разделе ставки, помещенная в книге Луки Паччиоли (1445- ок.1514). Книга называлась «Сумма знаний по арифметике, геометрии, отношении и пропорции» и была опубликована в Венеции в 1494 году.

Задача Паччиоли

12 Задача Паччиоли

Задача Паччиоли

Двое играют в некоторую игру, где шансы на победу у каждого игрока одинаковы. Игроки договорились играть до 6 побед, но игра остановилась, когда у одного было 5 побед, а у другого – 3 . Как следует разделить приз? (Сам Паччиоли считал, что приз надо делить пропорционально количеству выигранных партий. Однако правильный ответ не так прост.)

13 Новые имена

Новые имена

Следующим человеком, который внес значительный вклад в осмысление законов, управляющих случаем, был Галилео Галилей (1564 -1642). Именно он заметил, что результаты измерений носят случайный характер. Результаты физических экспериментов нуждаются в поправках, основанных на теории вероятностей.

14 Новые имена

Новые имена

Важный этап в развитии теории вероятностей связан с именами французских математиков Блеза Паскаля (1623 -1662) и Пьера Ферма (1601- 1665). В ответах этих ученых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории – вероятность события и математическое ожидание

Задача кавалера де Мере

15 Задача кавалера де Мере

Задача кавалера де Мере

При четырехкратном бросании игральной кости что происходит чаще: выпадет шестерка хотя бы один раз или же шестерка не появится ни разу?

Эта одна из тех задач , с которыми кавалер де Мере обратился к Б.Паскалю в надежде узнать выигрышную стратегию.

Решение задачи кавалера де Мере

16 Решение задачи кавалера де Мере

Решение задачи кавалера де Мере

При четырехкратном бросании игральной кости что происходит чаще: выпадет шестерка хотя бы один раз или же шестерка не появится ни разу?

На каждой из четырех костей может выпасть любое из шести чисел, независимо друг от друга. Всего вариантов 6 ? 6 ? 6 ? 6 = 1296 Количество вариантов без шестерки будет, соответственно, 5 ? 5 ? 5 ? 5 = 625 В остальных 1296 – 625 = 671 вариантах шестерка выпадет хотя бы один раз. Значит, появление шестерки хотя бы один раз при четырех бросаниях происходит чаще, чем ее непоявление.

17 На пути становления науки

На пути становления науки

Выдающийся голландский математик, механик, астроном и изобретатель Х.Гюйгенс (1629 - 1695) под влиянием переписки Паскаля и Ферма заинтересовался задачами вероятностного характера, результатом чего явилась работа «О расчетах в азартных играх». Трактат Гюйгенса выдержал несколько изданий и был единственной книгой по теории вероятностей в XVII веке.

18 На пути становления науки

На пути становления науки

Но как математическая наука теории вероятностей начинается с работы выдающегося швейцарского математика Якоба Бернулли (1654 -1705) «Искусство предположений». В этом трактате доказано ряд теорем, в том числе и самая известная теорема «Закон больших чисел»

19 На пути становления науки

На пути становления науки

Развитие естествознания и техники точных измерений, военного дела и связанной с ней теории стрельбы, учение о молекулах в кинетической теории газов ставило перед учеными конца XVIII века все новые и новые задачи теории вероятностей

20 История продолжается

История продолжается

Крупнейшими представителями теории вероятностей как науки были математики П.Лаплас (1749-1827) К. Гаусс (1777-1855) С. Пуассон (1781-1840)

21 Русский период в развитии теории вероятностей

Русский период в развитии теории вероятностей

Особенно быстро теория вероятностей развивалась во второй половине XIX и XX вв. Здесь фундаментальные открытия были сделаны математиками Петербургской школы П.Л.Чебышёвым (1821-1894), А.М.Ляпуновым (1857-1918), А.А.Марковым (1856-1922).

22 Недалекое прошлое

Недалекое прошлое

Строгое логическое обоснование теории вероятностей произошло в XX в. и связано, в первую очередь, с именами математиков

С.Н.Бернштейна,

А.Н.Колмогорова

А.Я.Хинчина,

Б.П.Гнеденко,

Ю.В.Линника

23 С.Н.Бернштейн (1880 - 1968)

С.Н.Бернштейн (1880 - 1968)

Вклад в развитие теории вероятностей В 1917 году разработал самую первую по времени аксиоматику теории вероятностей.

24 А.Н.Колмогоров ( 1903 - 1987 )

А.Н.Колмогоров ( 1903 - 1987 )

Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. В 1933 году разработал аксиоматику, которая в настоящее время является общепринятой.

25 А.Я. Хинчин (1894 - 1959)

А.Я. Хинчин (1894 - 1959)

Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. Разработал свою аксиоматику теории вероятностей.

26 Б.П.Гнеденко ( 1912-1995 )

Б.П.Гнеденко ( 1912-1995 )

Вклад в развитие теории вероятностей

В начале июня 1941 года защитил докторскую диссертацию "Предельные теоремы для независимых случайных величин"

С 1960 года работает профессором кафедры теории вероятностей механико-математического факультета МГУ. С 1966 года он назначается заведующим этой кафедрой и руководит ею до последних дней своей жизни.

27 Ю.В.Линник (1915 - 1972)

Ю.В.Линник (1915 - 1972)

Вклад в развитие теории вероятностей Основные труды по теории чисел, теории вероятности и математической статистики.

28 Благодарю за внимание

Благодарю за внимание

Предлагаю вам посмотреть следующую часть презентации «Основные понятия теории вероятностей»

«Теория вероятности»
http://900igr.net/prezentatsii/algebra/Teorija-verojatnosti/Teorija-verojatnosti.html
cсылка на страницу
Урок

Алгебра

34 темы
Слайды
Презентация: Теория вероятности.ppt | Тема: Вероятность | Урок: Алгебра | Вид: Слайды
900igr.net > Презентации по алгебре > Вероятность > Теория вероятности.ppt