Слайды из презентации
«Вероятность» к уроку алгебры на тему «Вероятность»
Автор: Елена.
Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке,
скачайте файл «Вероятность.ppt» бесплатно
в zip-архиве размером 526 КБ.
Скачать презентацию
№ | Слайд | Текст |
1 |
 |
Формула полной вероятностиФормула Бейеса. 1 |
2 |
 |
Формула полной вероятностиФормула Бейеса P(Hi|A) = = 2 |
3 |
 |
Задачи1. В сборочный цех поступили детали с трех станков. На первом станке изготовлено 51% деталей от их общего количества, на втором станке 24% и на третьем 25%. При этом на первом станке было изготовлено 90% деталей первого сорта, на втором 80% и на третьем 70%. Используя формулу полной вероятности определить, какова вероятность того, что взятая наугад деталь окажется первого сорта ? Далее, из условия задачи следует, что: Используя формулу полной вероятности, получим искомую вероятность Решение: Пусть A - событие, состоящее в том, что взятая деталь окажется первого сорта, а H1, H2 и H3 - гипотезы, что она изготовлена соответственно на 1, 2 и 3 станке. Вероятности этих гипотез соответственно равны: 3 |
4 |
 |
Задачи2. В водоеме обнаружено загрязнение с превышением ПДК. Потенциальные источники - два предприятия, причем выбросы на первом происходят в 9 раз чаще, чем на втором. Только 15% сбросов первого предприятия превышают ПДК. Для второго предприятия эта вероятность равна 92% Кто виноват?! Решение: 4 |
5 |
 |
Задачи3. Два стрелка подбрасывают монетку и выбирают, кто из них стреляет по мишени (одной пулей). Первый стрелок попадает по мишени с вероятностью 1, второй стрелок — с вероятностью 0.00001. Пуля попала в цель. Кто стрелял? Решение: Можно сделать два предположения: Рассмотрим событие : Известно, что : Поэтому вероятность пуле попасть в мишень Очевидно, что первая из этих гипотез много вероятнее второй (а именно, в 100000 раз). Действительно, 5 |
6 |
 |
ЗадачиИз условия задачи следует, что: 4. Имеется три одинаковых по виду ящика. В первом ящике находится 26 белых шаров, во втором 15 белых и 11 черных, в третьем ящике 26 черных шаров. Из выбранного наугад ящика вынули белый шар. Вычислить вероятность того, что белый шар вынут из первого ящика. Решение: Пусть A - событие, состоящее в том, что взятый шар окажется белым, а H1 , H2, Н3 - гипотезы, что шар был взят из 1-го , 2-го, 3-го ящика. Вероятности указанных гипотез равны: 6 |
7 |
 |
Предпоследняя задача5. Среди 25 экзаменационных билетов 5 «хороших». Два студента по очереди берут по одному билету. Найти вероятность того, что второй студент взял «хороший» билет. Решение: А={второй студент взял «хороший» билет} H1={первый взял «хороший» билет}, H2={первый взял «плохой» билет}. 7 |
8 |
 |
Последняя задача6. Из 10 учеников, пришедших на экзамен, трое подготовились отлично, четверо хорошо, двое удовлетворительно и один совсем не подготовился. В билетах 20 вопросов. Отличники могут ответить на все вопросы, хорошисты – на 16, троечники – на 10, а двоечники – на 5 вопросов. Каждый ученик получает 3 вопроса. Приглашенный первый ученик ответил на три вопроса. Какова вероятность, что он отличник? Решение: А={ученик ответил на три вопроса}, H1={приглашенный ученик отличник}, H2={ученик-хорошист}, H3={ученик-троечник}, H4={ученик-двоечник}. 8 |
9 |
 |
9 |
«Вероятность» |