Астрономия Скачать
презентацию
<<  Основы астрономии Мир глазами астронома  >>
Вспомогательные инструменты и методы астрономии
Вспомогательные инструменты и методы астрономии
Фотоэлектрические наблюдения
Фотоэлектрические наблюдения
Алголь
Алголь
Розенберг и Гутник
Розенберг и Гутник
Фотоэлектронные приемники
Фотоэлектронные приемники
Светофильтры
Светофильтры
Природа цефеид
Природа цефеид
Предположение о спектральной двойственности
Предположение о спектральной двойственности
Теория радиальных пульсаций
Теория радиальных пульсаций
Харлоу Шепли
Харлоу Шепли
Артур Эддингтон
Артур Эддингтон
Кнут Лундмарк
Кнут Лундмарк
Фриц Цвикки
Фриц Цвикки
Разгадка происхождения линий
Разгадка происхождения линий
Г. Бете и К. Вейцзеккер
Г. Бете и К. Вейцзеккер
Радиусы
Радиусы
Яркая желтая линия
Яркая желтая линия
Локьер
Локьер
Звездная эволюция
Звездная эволюция
Наблюдательные основания
Наблюдательные основания
Койпер
Койпер
С. Чандрасекар и М. Шенберг
С. Чандрасекар и М. Шенберг
Двумерная спектральная классификация
Двумерная спектральная классификация
Центральная яркая область
Центральная яркая область
Вальтер Бааде
Вальтер Бааде
Звездные населения
Звездные населения
Б.В. Кукаркин
Б.В. Кукаркин
Исследования туманностей
Исследования туманностей
Исследования туманностей и межзвездной среды
Исследования туманностей и межзвездной среды
Иоганнес Гартман
Иоганнес Гартман
Наличие “темных пятен”
Наличие “темных пятен”
Роберт Трюмплер
Роберт Трюмплер
Стремгрен
Стремгрен
Карл Янский
Карл Янский
Грот Рёбер
Грот Рёбер
Солнечные вспышки
Солнечные вспышки
Хендрик ван де Хюлст
Хендрик ван де Хюлст
Излучение в радиолиниях
Излучение в радиолиниях
Н.С. Кардашев
Н.С. Кардашев
И.С. Шкловский
И.С. Шкловский
Первая радиокарта неба
Первая радиокарта неба
Спиральная структура Галактики
Спиральная структура Галактики
Становление радиоастрономии
Становление радиоастрономии
Внегалактическая радиоастрономия
Внегалактическая радиоастрономия
Т. Метьюз и А. Сендидж
Т. Метьюз и А. Сендидж
Маартен Шмидт
Маартен Шмидт
Внегалактические исследования
Внегалактические исследования
Слайды из презентации «Методы астрономии» к уроку астрономии на тему «Астрономия»

Автор: Наталья Сотникова. Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Методы астрономии.ppt» бесплатно в zip-архиве размером 259 КБ.

Скачать презентацию

Методы астрономии

содержание презентации «Методы астрономии.ppt»
СлайдТекст
1 Вспомогательные инструменты и методы астрономии

Вспомогательные инструменты и методы астрономии

Фотоэлектрические наблюдения Д. Стеббинс (1878-1966) - директор обсерватории Иллинойского университета, 1903-1922; директор Уошборнской обсерватории Висконсинского университета, 1922-1948. 1910 г. – первые наблюдения с селеновым фотоэлементом. (Струве, стр. 82-83).

История астрономии 20-40-е гг., 40-60-е гг. XX века

2 Фотоэлектрические наблюдения

Фотоэлектрические наблюдения

Вспомогательные инструменты и методы астрономии Фотоэлектрические наблюдения Кривая блеска Алголя со вторичным минимумом (ApJ,vol. 32, p. 185, 1910) – ?m = 0.06 !!!

История астрономии 20-40-е гг., 40-60-е гг. XX века

3 Алголь

Алголь

Вспомогательные инструменты и методы астрономии Фотоэлектрические наблюдения Алголь (? Персея) – переменность блеска открыл Джеминиано Монтанари (1633-1687). Период изменений блеска – Джон Гудрайк (1764-1786) в 1782 г. Предположение о двойственности. 1889 г. Антониа Мори – двойные K линии в спектре ? Ursae Majoris – Мицар. Первая спектральная двойная. 1889 г. (декабрь) – Фогель – смещение одной линии в спектре Алголя.

История астрономии 20-40-е гг., 40-60-е гг. XX века

4 Розенберг и Гутник

Розенберг и Гутник

Вспомогательные инструменты и методы астрономии Фотоэлектрические наблюдения 1910-1913 – Розенберг и Гутник (Германия) – первые эксперименты с фотоэлементами на основе внешнего фотоэффекта. Точность 0m.01 (Струве, стр.84 - дискуссия на съезде АО) (Струве, стр.86 – слова Стеббинса).

История астрономии 20-40-е гг., 40-60-е гг. XX века

5 Фотоэлектронные приемники

Фотоэлектронные приемники

Вспомогательные инструменты и методы астрономии Фотоэлектрические наблюдения С середины 40-х гг. – фотоэлектронные приемники излучения (фотоумножители). Сер. XX в. – приборы фотоэлектронного изображения. 1949 г. - Использование электронно-оптических преобразователей (ЭОП). Первые попытки наблюдений с помощью телевизионных систем.

История астрономии 20-40-е гг., 40-60-е гг. XX века

6 Светофильтры

Светофильтры

Вспомогательные инструменты и методы астрономии Светофильтры 1909 г. – Г.А. Тихов (1875-1960) – изучение поверхности Марса. 1953 г. – Гарольд Джонсон и У. Морган – система трех светофильтров - трехцветная система UBV. U – УФ B – синий V – желтый С 1959 г. – постепенно расширяется в ИК область.

История астрономии 20-40-е гг., 40-60-е гг. XX века

7 Природа цефеид

Природа цефеид

(? Цефея – периодичность изменения блеска обнаружена Джоном Гудрайком в 1784 г. – 5,37 суток.) (1908 и 1912 г. – Генриетта Ливитт – соотношение период-светимость - ММО.) 1894 г. - А.А. Белопольский – периодичность изменения лучевой скорости Цефея (с тем же периодом, что и изменение ее блеска).

История астрономии 20-40-е гг., 40-60-е гг. XX века

8 Предположение о спектральной двойственности

Предположение о спектральной двойственности

Природа цефеид Предположение о спектральной двойственности.

История астрономии 20-40-е гг., 40-60-е гг. XX века

9 Теория радиальных пульсаций

Теория радиальных пульсаций

Природа цефеид Долгое время считалось, что цефеиды двойные (Куртис, Джинс). 1879 г. – Риттер – теория радиальных пульсаций. Плотность – период пульсаций. 1896 г. – Н.А. Умов – пульсирующие звезды.

История астрономии 20-40-е гг., 40-60-е гг. XX века

10 Харлоу Шепли

Харлоу Шепли

Природа цефеид 1914 г. - Харлоу Шепли – показал, что цефеиды не могут быть двойными. Радиусы цефеид в десятки раз больше предполагавшихся расстояний между компонентами двойной. (Струве, стр. 349) 1917 г. – Артур Эддингтон – теория пульсаций. Два источника энергии – периодическое усиление ядерных реакций изменение прозрачности внешних слоев.

История астрономии 20-40-е гг., 40-60-е гг. XX века

11 Артур Эддингтон

Артур Эддингтон

Природа цефеид 1941 г. – Артур Эддингтон – смена процессов ионизации и рекомбинации водорода. 1953-1957 гг. – С.А. Жевакин – ионизованный гелий. Р. Киппенхан и Р. Кристи – пульсируют звезды больших масс (5-10 масс Солнца).

История астрономии 20-40-е гг., 40-60-е гг. XX века

12 Кнут Лундмарк

Кнут Лундмарк

Природа сверхновых 1919 г. – Кнут Лундмарк (1889-1958) – идея о гигантских “новых”. 1572 г. – сверхновая Тихо Браге. 1604 г. – сверхновая Кеплера. по китайским хроникам – сверхновая 1054 г. (Климишин, стр. 273) Э. Хаббл – Крабовидная туманность (описана в начале XVIII в. – в 1731 г.) - при вспышке этой сверхновой.

История астрономии 20-40-е гг., 40-60-е гг. XX века

13 Фриц Цвикки

Фриц Цвикки

Природа сверхновых 1934 г. – Фриц Цвикки (1989-1974) и Вальтер Бааде (1893-1960) – явление вспышки СН – превращение звезды, исчерпавшей свои источники энергии, в нейтронную звезду (Цвикки – систематические наблюдения). (1932 г. – Чедвик – открытие нейтрона.) 1937 г. – Л.Д. Ландау (1932 г. – возможность? - спорно), 1939 г. Р. Оппенгеймер и М. Волков (США) – теория нейтронных звезд.

История астрономии 20-40-е гг., 40-60-е гг. XX века

14 Разгадка происхождения линий

Разгадка происхождения линий

Источники энергии звезд 1925 г. – разгадка происхождения линий в спектрах звезд (Сесилия Пейн-Гапошкина). Температура и хим.состав. Теперь необходимо было объяснить хим.состав – источники энергии. Артур Эддингтон – принципиальная идея. 1929 г. – Р. Аткинсон и Ф. Хоутерманс – осознание роли туннельного эффекта. Г.А. Гамов (теория альфа-распада) - математический аппарат.

История астрономии 20-40-е гг., 40-60-е гг. XX века

15 Г. Бете и К. Вейцзеккер

Г. Бете и К. Вейцзеккер

Источники энергии звезд 1938-1939 гг. - Г. Бете и К. Вейцзеккер – CNO-цикл и pp-цепочки. 1952 г. – Эдвин Солпитер – при выгорании водорода при температуре > 100 млн градусов – горение гелия. Позже – стало ясно как образуются более сложные химические элементы.

История астрономии 20-40-е гг., 40-60-е гг. XX века

16 Радиусы

Радиусы

Звездная эволюция К сер. 50-х годов – хим.состав, радиусы, массы, светимости, эффективность ядерных реакций, непрозрачность газа. + развитие теории переноса излучения + теория конвекции – теория звездной эволюции.

История астрономии 20-40-е гг., 40-60-е гг. XX века

17 Яркая желтая линия

Яркая желтая линия

Звездная эволюция Норман Локьер (1836-1920) (1871 г. - яркая желтая линия в спектре протуберанцев - гелий. 1869 г. - основал журнал “Nature” и был редактором до конца жизни.) Одна из первых схем 1887 г.

История астрономии 20-40-е гг., 40-60-е гг. XX века

18 Локьер

Локьер

Звездная эволюция Локьер (1836-1920). Одна из первых схем 1887 г.: от красного гиганта к белому гиганту и далее к красному карлику.

История астрономии 20-40-е гг., 40-60-е гг. XX века

19 Звездная эволюция

Звездная эволюция

1913 г. – Рессел – почти такая же схема. (Струве, стр. 219) (Климишин, стр.309).

История астрономии 20-40-е гг., 40-60-е гг. XX века

20 Наблюдательные основания

Наблюдательные основания

Звездная эволюция Наблюдательные основания Сер. 20-х – Бенгт Стремгрен: как будет изменяться положение зведы на диаграмме спектр-светимость в зависимости от содержания водорода – “вправо вверх”. 1937 г. – Джерард Петер Койпер (1905-1973) – сопоставил эффективные температуры – абс. зв. величины для 14 рассеянных скоплений (по наблюдениям Трюмплера). У каждого скопления – своя последовательность. Согласие со стремгреновскими линиями постоянного содержания водорода. (Климишин, стр.310, рис.68).

История астрономии 20-40-е гг., 40-60-е гг. XX века

21 Койпер

Койпер

Звездная эволюция Наблюдательные основания 1937 г. – Койпер (1905-1973) – 14 рассеянных скоплений (по наблюдениям Трюмплера).

История астрономии 20-40-е гг., 40-60-е гг. XX века

22 С. Чандрасекар и М. Шенберг

С. Чандрасекар и М. Шенберг

Звездная эволюция Теория и расчеты 1942 г. – С. Чандрасекар и М. Шенберг – предел Шенберга-Чандрасекара (10% водорода – в гелий) – звезда сходит с ГП. 50-е гг. – Мартин Шварцшильд – модели внутренней структуры. Впервые направление эволюции, особенно на поздних стадиях (вырожденное ядро).

История астрономии 20-40-е гг., 40-60-е гг. XX века

23 Двумерная спектральная классификация

Двумерная спектральная классификация

Звездные населения Двумерная спектральная классификация 40-е гг. – У. Морган и Ф. Кинан (Йеркская обсерватория) – МК классификация звездных спектров (не только спектральный класс, но и светимость). Ia – наиболее яркие сверхгиганты Ib – менее яркие сверхгиганты II - яркие сверхгиганты III – нормальные гиганты IV - субгиганты V – звезды ГП.

История астрономии 20-40-е гг., 40-60-е гг. XX века

24 Центральная яркая область

Центральная яркая область

Звездные населения М 31 Центральная яркая область долго не разрешалась на звезды (1929 г. – Хаббл – состоит из газа). Различия в звездном составе (нет ярких звезд). (Ефремов, стр. 169-170).

История астрономии 20-40-е гг., 40-60-е гг. XX века

25 Вальтер Бааде

Вальтер Бааде

Звездные населения 1942 г. – Вальтер Бааде (1893-1960) – первые признаки разрешения на звезды. (Ефремов, стр. 170) Эксперименты с “синими” (фон – до 90 минут) и “красными” (фон проявлялся через 8-9 часов) пластинками. (Ефремов, стр. 171) Август-сентябрь 1943 г. – разрешение на звезды М 31 – красные звезды. Это могли быть только КГ – как в шаровых скоплениях.

История астрономии 20-40-е гг., 40-60-е гг. XX века

26 Звездные населения

Звездные населения

Вслед за М 31 – два ее эллиптических спутника – M 32 и NGC 205. Затем NGC 147 и NGC 185. Затем – галактики в Печи и Скульпторе (RR Лиры). Два типа населения.

История астрономии 20-40-е гг., 40-60-е гг. XX века

27 Б.В. Кукаркин

Б.В. Кукаркин

Звездные населения 1947 г. – Б.В. Кукаркин – по пространственному распределению переменных звезд – плоская подсистема, промежуточная и сферическая. П.П. Паренаго – различие кинематики. Позже – различие хим. состава (содержания тяжелых элементов).

История астрономии 20-40-е гг., 40-60-е гг. XX века

28 Исследования туманностей

Исследования туманностей

и межзвездной среды Процессы взаимодействия между веществом и излучением (аппарат квантовой механики). Планетарные туманности (ПТ). Линии небулия. 1928 г. – Айра Боуэн (1898-1973) - две из линий небулия N1 и N2 – запрещенные переходы [OIII]. Возникают при маленькой плотности газа и маленькой плотности излучения.

История астрономии 20-40-е гг., 40-60-е гг. XX века

29 Исследования туманностей и межзвездной среды

Исследования туманностей и межзвездной среды

Свен Росселанд (1894-1985) – присутствие эмиссионных линий в спектрах ПТ – флюоресценция 1931 г. - теорема Росселанда - 1?3?2?1 чаще в туманностях, подсвечиваемых звездой, чем 1?2?3?1 Занстра – метод определения температуры звезды, ионизующей газ. В.А. Амбарцумян – массы туманностей и температура газа (30-е гг.).

История астрономии 20-40-е гг., 40-60-е гг. XX века

30 Иоганнес Гартман

Иоганнес Гартман

Исследования туманностей и межзвездной среды 1904 г. – Иоганнес Гартман (1865-1936) – спектр двойной звезды ? Ориона - линии Н и К (Ca II) не сдвигаются. Межзвездное облако. 1919 г. – межзвездные линии натрия. 1937 г. – калий, железо, титан и т.д. 1930 г. – Роберт Трюмплер (1886-1956) – по статистике размеров рассеянных скоплений – межзвездное поглощение.

История астрономии 20-40-е гг., 40-60-е гг. XX века

31 Наличие “темных пятен”

Наличие “темных пятен”

Исследования межзвездной среды Наличие “темных пятен” – диффузная среда. 1904 г. – Иоганнес Гартман (1865-1936) – спектр двойной звезды ? Ориона - линии Н и К (Ca II) не сдвигаются. Межзвездное облако. 1919 г. – межзвездные линии натрия. 1937 г. – калий, железо, титан и т.д. Отто Струве и С.Б. Герасимович – расщепление линий, множество облаков, оценки средней плотности. 1938 г. – Отто Струве – небулярный спектрограф – облака газа, излучающие в сериях Бальмера.

История астрономии 20-40-е гг., 40-60-е гг. XX века

32 Роберт Трюмплер

Роберт Трюмплер

Исследования межзвездной среды 1930 г. – Роберт Трюмплер (1886-1956) – по статистике размеров рассеянных скоплений – межзвездное поглощение - пыль. 1948-1949 гг. - У. Хилтнер и Дж. Холл и В.А. Домбровский – межзвездная поляризация света. 1951 г. – Р. Девис и Дж. Гринстейн – механизм поляризации – несферические частицы в магнитном поле.

История астрономии 20-40-е гг., 40-60-е гг. XX века

33 Стремгрен

Стремгрен

Исследования межзвездной среды 1939 г. – Стремгрен – теоретическое обоснование существования зон H II. 1951-1955 гг. – Ф. Кан и С.А. Каплан – движение ионизационных фронтов. С.Б. Пикельнер и С.А. Каплан – движение ударных волн в межзвездной среде. С.А. Каплан – теория турбулентности межзвездной среды.

История астрономии 20-40-е гг., 40-60-е гг. XX века

34 Карл Янский

Карл Янский

Становление радиоастрономии 1932 г. – Карл Янский (1905-1950) – космическое радиоизлучение (радиошум, создаваемый излучением на длине волны 14,6 м). 1933 г. – отождествил с Млечным Путем – радиошум был связан с определенным направлением. 1935 г. – центральная часть Млечного Пути – по характеру зависимости направления от времени дня и времени года.

История астрономии 20-40-е гг., 40-60-е гг. XX века

35 Грот Рёбер

Грот Рёбер

Становление радиоастрономии С 1937 г. – Грот Рёбер – систематические радионаблюдения неба (первый радиотелескоп-параболоид диаметром 9.5 м). 1939 г. – первый результат. 1942 г. – открытие радиоизлучение Солнца на метровых волнах (резкое возрастание излучения при вспышке обнаружил Хей на радиолокаторе). 1942 г. - Саусворт (США) - тепловое радиоизлучение спокойного Солнца на волнах 3 и 10 см.

История астрономии 20-40-е гг., 40-60-е гг. XX века

36 Солнечные вспышки

Солнечные вспышки

Становление радиоастрономии 1942 г. – Дж. Хей - солнечные вспышки, (Струве, стр. 100-101) 1946 г. - Дж. Хей, С. Парсонс и Дж. Филлипс - первый дискретный источник Лебедь A.

История астрономии 20-40-е гг., 40-60-е гг. XX века

37 Хендрик ван де Хюлст

Хендрик ван де Хюлст

Становление радиоастрономии Излучение в радиолиниях 1947 г. – Хендрик ван де Хюлст – переход между подуровнями сверхтонкой структуры основного состояния атома водорода. Линия на длине волны ? = 21,11 см (? = 1420,4 МГц).

История астрономии 20-40-е гг., 40-60-е гг. XX века

38 Излучение в радиолиниях

Излучение в радиолиниях

Становление радиоастрономии Излучение в радиолиниях 1948 г. (публикация 1949 г.) – И.С. Шкловский (1916-1985) рассчитал вероятность перехода и интенсивность излучения - радиолинию можно наблюдать при помощи тогдашней технике! 1951 г. – первая регистрация радиоизлучения – США, Голландия, Австралия. (Ефремов, стр.145).

История астрономии 20-40-е гг., 40-60-е гг. XX века

39 Н.С. Кардашев

Н.С. Кардашев

Становление радиоастрономии Излучение в радиолиниях 1952 г. – Дж. Вилд (США) и 1959 г. – Н.С. Кардашев – принципиальная возможность наблюдений переходов между близкими уровнями атома водорода (при n>28 - радиодиапазон). Разреженная среда.

История астрономии 20-40-е гг., 40-60-е гг. XX века

40 И.С. Шкловский

И.С. Шкловский

Становление радиоастрономии Излучение в радиолиниях 1959 г. – И.С. Шкловский - возможность обнаружения линий молекул OH (? = 18 см) и CH (? = 9 см). Линии OH – 1963 г. – сотрудники Массачусетского технологического института – в спектре источника Кассиопея А – две линии поглощения ОН. 1965 г. – космические мазеры – аномальное излучение молекул OH (первоначально “мистериум”). CH - 1973 г.

История астрономии 20-40-е гг., 40-60-е гг. XX века

41 Первая радиокарта неба

Первая радиокарта неба

Становление радиоастрономии Нетепловое радиоизлучение 1942 г. – Грот Рёбер – первая радиокарта неба. Природа? 1950 г. – Х. Альвен и Н. Герлофсон (Швеция) и К. Киппенхойер (ФРГ) – релятивистские электроны, движущиеся в магнитных полях. 1950-1953 гг. – В.Л. Гинзбург, Г.Г. Гетманцев, М.И. Фрадкин – теория синхротронного излучения. 1949 г. – Дж. Болтон и Г. Стенли (Австралия) – мощный источник радиоизлучения Телец А – Крабовидная туманность. 1953 г. – И.С. Шкловский – синхротронная природа.

История астрономии 20-40-е гг., 40-60-е гг. XX века

42 Спиральная структура Галактики

Спиральная структура Галактики

Становление радиоастрономии Спиральная структура Галактики.

1954 г. – ван де Хюлст, Мюллер и Оорт (Лейденская обсерватория) – первые карты распределения нейтрального водорода в Галактике. Для данной галактической долготы – зависимость интенсивности излучения от длины волны.

История астрономии 20-40-е гг., 40-60-е гг. XX века

43 Становление радиоастрономии

Становление радиоастрономии

Внегалактическая радиоастрономия 1946 г. – Дж. Хей, С. Парсонс и Дж. Филлипс (Англия) – дискретный источник Лебедь А. Каталоги таких объектов. 1950 г. – Первый Кембриджский каталог. 1955 г. – Второй. 1959 г. – Третий Кембриджский каталог (3C) (под рук. Мартина Райла).

История астрономии 20-40-е гг., 40-60-е гг. XX века

44 Внегалактическая радиоастрономия

Внегалактическая радиоастрономия

Становление радиоастрономии Внегалактическая радиоастрономия Природа? Радиозвезды? 1960 г. - Т. Метьюз и А. Сендидж – отождествили 3C 48 со слабым звездообразным объектом 16 зв.вел. (на 5-м телескопе). Эмиссионные линии!?

История астрономии 20-40-е гг., 40-60-е гг. XX века

45 Т. Метьюз и А. Сендидж

Т. Метьюз и А. Сендидж

Становление радиоастрономии Внегалактическая радиоастрономия 1962 г. - Т. Метьюз и А. Сендидж – 3C 286 – объект 17 зв. вел (в УФ на 1 зв. вел. ярче, чем в оптике). 1963 г. – К. Хазард, М. Маккей и А. Шиминс (Австралия) – 3C 273 – при покрытии Луной – координаты. Двойной. Звезда 13 зв.вел. + туманность в виде струи.

История астрономии 20-40-е гг., 40-60-е гг. XX века

46 Маартен Шмидт

Маартен Шмидт

Становление радиоастрономии Внегалактическая радиоастрономия Маартен Шмидт (Паломар) – 3C 273 – 4 из 6 эмиссионных линий – бальмеровские, если их сдвинуть в УФ (z = 0,16). (Ефремов, стр. 196) Позже Гринстейн 3C 48 – z = 0,367. Светимости 1045 – 1047 эрг/c А.С. Шаров и Ю.Н. Ефремов - вариации блеска. (Ефремов, стр. 196-197) Позже Х. Смит и Д. Хоффлейт – размеры – 1 световая неделя. Квазары.

История астрономии 20-40-е гг., 40-60-е гг. XX века

47 Внегалактические исследования

Внегалактические исследования

50-е гг. – Маунт Паломар – на основе снимков в 2-х цветах (120 см, широкоугольный телескоп) – атлас неба. По этому атласу – Г. Эйбл – сформировал каталог скоплений галактик (1700). 1959 г. – Б.А. Воронцов-Вельяминов – “Атлас взаимодействующих галактик”.

История астрономии 20-40-е гг., 40-60-е гг. XX века

«Методы астрономии»
http://900igr.net/prezentatsii/astronomija/Metody-astronomii/Metody-astronomii.html
cсылка на страницу
Урок

Астрономия

25 тем
Слайды
Презентация: Методы астрономии.ppt | Тема: Астрономия | Урок: Астрономия | Вид: Слайды