Излучение Скачать
презентацию
<<  Тепловое излучение тел Излучение света  >>
Тепловидение
Тепловидение
Область применения законов теплового излучения
Область применения законов теплового излучения
Тепловое излучение
Тепловое излучение
Определения теории излучения
Определения теории излучения
Характеристики излучения
Характеристики излучения
Энергетическая светимость
Энергетическая светимость
Классические законы
Классические законы
Кривые зависимости
Кривые зависимости
Устройство тепловизоров
Устройство тепловизоров
Первые тепловизионные системы
Первые тепловизионные системы
Области применения методов тепловидения
Области применения методов тепловидения
Применение тепловидения в медицине
Применение тепловидения в медицине
Выделяют два основных вида термографии
Выделяют два основных вида термографии
Некоторые применения тепловизионных устройств в промышленности
Некоторые применения тепловизионных устройств в промышленности
Тепловизор
Тепловизор
Спасибо за внимание
Спасибо за внимание
Слайды из презентации «Тепловидение» к уроку физики на тему «Излучение»

Автор: User. Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Тепловидение.ppt» бесплатно в zip-архиве размером 436 КБ.

Скачать презентацию

Тепловидение

содержание презентации «Тепловидение.ppt»
СлайдТекст
1 Тепловидение

Тепловидение

2 Область применения законов теплового излучения

Область применения законов теплового излучения

Оглавление.

1. Тепловидение, как область применения законов теплового излучения

2. Основные понятия и определения теории излучения. Закон Кирхгофа

3. Классические законы теплового излучения

4. Устройство тепловизоров

5. Области применения методов тепловидения

6. Применение тепловидения в медицине

7. Некоторые применения тепловизионных устройств в промышленности

3 Тепловое излучение

Тепловое излучение

Тепловидение, как область определения законов излучения.

Тепловидение можно назвать универсальным способом получения различной информации об окружающем нас мире. Как известно, тепловое излучение имеет любое тело, температура которого отлична от абсолютного нуля. Кроме того, подавляющее большинство процессов преобразования энергии (а к ним относятся все известные процессы) протекает с выделением или поглощением тепла. Так как средняя температура на Земле не высока, большинство процессов проходят с малым удельным выделением тепла и при небольших температурах. Соответственно и максимум энергии излучения таких процессов попадает в инфракрасный микроволновый диапазон. Инфракрасное излучение невидимо для человеческого глаза, но может быть обнаружено различными приемниками теплового излучения и тем или иным способом преобразовано в видимое изображение

Тепловидение – это научно-техническое направление, изучающее физические основы, методы и приборы (тепловизоры), обеспечивающие возможность наблюдения слабонагретых объектов.

4 Определения теории излучения

Определения теории излучения

Основные понятия и определения теории излучения. Закон Кирхгофа.

Тепловым излучением называется электромагнитное излучение, испускаемое телом за счет его внутренней энергии. Излучение характеризуется длиной волны ? и частотой ?. Эти величины связаны: ?=2?с/?. При изучении законов теплового излучения используют модельную систему, в которой распределение энергии между телом и излучением остается неизменным для каждой длины волны (или частоты). Такое состояние системы «тело – излучение» называется равновесным. Энергетической светимостью тела R называется поток энергии, испускаемый единицей поверхности тела по всем направлениям.

5 Характеристики излучения

Характеристики излучения

Введем такие характеристики излучения, как r (?,Т) – испускательная способность тела, а (?,Т) – поглощательная способность тела.

Модель абсолютно черного тела

В 1860 г. Густав Кирхгоф, один из первых исследователей теплового излучения, сумел доказать, что отношение испускательной и поглощательной способностей тела не зависит от его природы, а является для всех тел одной и той же (универсальной) функцией частоты и температуры. r/а = f (?,Т) или (r/а)1 = (r/а)2 = (r/а)n = f (?,Т)

Одно из основных понятий теплового излучения – абсолютно черное тело. Т.е. тело, которое поглощает всю, падающую на него энергию, ни сколько энергии не отражает, а только излучает. Теоретическое объяснение законов излучения абсолютно черного тела имело огромное значение в истории физики – именно оно привело к понятию о квантах энергии.

Абсолютно черных тел в природе не существует. Есть вещества (например, сажа или платиновая чернь), поглощательная способность которых близка к единице, но только в некоторых частотах. Однако можно создать устройство, сколь угодно близкое по своим свойствам к абсолютно черному телу. Это почти замкнутая полость с маленьким отверстием. Излучение, проникшее внутрь через отверстие, прежде чем выйти обратно, претерпевает многократные отражения. При каждом отражении часть энергии поглощается, в результате чего почти все излучение любой частоты поглощается такой полостью.

6 Энергетическая светимость

Энергетическая светимость

Из рисунка следует, что энергетическая светимость абсолютно черного тела сильно возрастает с температурой. максимум испускательной способности с увеличением температуры сдвигается в сторону более коротких волн. Таким образом, по закону Кирхгофа функция частоты и температуры f(?,Т) есть не что иное, как испускательная способность абсолютно черного тела (r черн.тела.). r/а = f(?,Т) а черн.тела.?1 r черн.тела.= f(?,Т).

7 Классические законы

Классические законы

теплового излучения.

Исследование равновесного теплового излучения и поиск универсальной функции f(?,Т) выступил на первый план в работах физиков конца XIX века. К этим исследованиям относятся работы Стефана и Больцмана, Рэлея и Джинса, Вина (классическая теория излучения) и Планка (квантовая). В 1879 г. Йозеф Стефан, основываясь на экспериментах, решил, что энергетическая светимость любого тела пропорциональна четвертой степени температуры. Однако через несколько лет Больцман доказал, что это утверждение справедливо только для абсолютно черных тел. Найденная ими зависимость получила названия закона Стефана-Больцмана. R ч.т.= ? f(?,T)·d? = ?·Т4 ,где ? экспериментально найденная константа. ? = 5,670·10-8 (Вт/м?·К) Вилли Вин нашел зависимость температуры абсолютно черного тела от максимума спектра излучения (? max). Оказалось, что с повышением температуры возрастает общая энергия излучения, а максимум спектра излучения смещается в область меньших длин волн (высоких частот). Т·? max= const (const = 2,898 10 м·К – экспериментальное значение) Этот закон называют законом смещения Вина.

Вин также занимался поиском функции спектрального распределения f(?,Т) и нашел, что она должна иметь следующий вид: f(?,T) = ??F(?/Т), где F – некоторая функция отношения частоты к температуре. Как будет показано ниже, эта формула справедлива только для больших частот. Введем понятие плотности равновесного теплового излучения (u), т.е. энергии, испускаемой в данном интервале частот (от ? до ?+d?). d u (?,T)= f(?,T) ·d ? Рэлей и Джинс сделали попытку определить зависимость плотности излучения u от ? и Т, исходя из теоремы классической статистики о равнораспределении энергии по степеням свободы. Они предположили, что на каждое электромагнитное колебание приходится в среднем энергия, равная kТ: kТ/2 на электрическую и kТ/2 на магнитную энергию волны. Они получили: Эта формула удовлетворительно соглашается с экспериментом только в области малых частот (инфракрасном спектре) и резко расходится в ультрафиолетовом спектре. Из их формулы следовало, что вследствие теплообмена каждое тело должно отдать всю свою энергию излучению и охладиться до абсолютного нуля. Этот вывод был назван ультрафиолетовой катастрофой.

8 Кривые зависимости

Кривые зависимости

испускательной способности ?(?) абсолютно черного тела от длины волны. Сплошная кривая получена экспериментально, штриховая кривая построена по формуле Рэлея-Джинса. Из графика видно, что при ??0 (???) r(?,T)??.

С точки зрения классической теории излучения вывод формулы Рэлея-Джинса безупречен. Поэтому расхождение этой формулы с опытом указывало на существование каких-то закономерностей, несовместимых с представлениями классической физики.

9 Устройство тепловизоров

Устройство тепловизоров

Инфракрасное излучение является низкоэнергетическим и для глаза человека невидимо, поэтому для его изучения созданы специальные приборы - тепловизоры (термографы), позволяющие улавливать это излучение, измерять его и превращать его в видимую для глаза картину. Тепловизоры относятся к оптико-электронным приборам пассивного типа. В них невидимое глазом человека излучение переходит в электрический сигнал, который подвергается усилению и автоматической обработке, а затем преобразуется в видимое изображение теплового поля объекта для его визуальной и количественной оценки. Диапазон инфракрасного излучения делится на несколько фрагментов :

Длина волн (мкм)

Название

0.76-1.5

Ближнее инфракрасное излучение

1.5-5.5

Коротковолновое инфракрасное излучение

5.6-25

Длинноволновое инфракрасное излучение

25-100

Дальнее инфракрасное излучение

10 Первые тепловизионные системы

Первые тепловизионные системы

были созданы в конце 30-х гг. 20 в. и частично применялись в период 2-й мировой войны для обнаружения военных и промышленных объектов. Общий принцип устройства всех тепловизоров следующий:

11 Области применения методов тепловидения

Области применения методов тепловидения

Тепловидение нашло применение во многих сферах человеческой деятельности. Например, тепловизоры применяются в целях военной разведки и охраны объектов. В ручной тепловизионный ночной визит человека можно увидеть в полной темноте на расстоянии 300 м. Объекты обычной военной техники видны на расстоянии 2-3 км. На сегодняшний день созданы видеокамеры данного микроволнового диапазона с выводом изображения на экран компьютера, чувствительностью (разрешаемой способностью разницы температур отдельных участков поверхности) в несколько сотых градуса. Это значит, что если вы при входе в свою парадную взялись за ручку двери, чтобы открыть ее, то ваш тепловой отпечаток будет виден на этой ручке целых полчаса. Даже дома при выключенном свете вы будете светить как маяк даже через занавеску. В метро можно спокойно отличить людей, которые только что вошли. А наличие насморка у человека и занимался ли он чем-нибудь интересным до этого можно наблюдать на расстоянии в несколько сотен метров. О распознавании недавно выключенной машины или о том, кто и когда сидел на данном кресле даже нечего и говорить. Перспективно использование тепловизоров для нахождения дефектов в различных установках. Естественно, когда в какой-нибудь установке или узле наблюдается повышение или понижение тепловыделения при каком-нибудь процессе в местах, где этого не должно быть, или тепловыделение (теплопоглощение) в подобных узлах сильно различается, то неполадку можно своевременно исправить. Иногда некоторые дефекты можно заметить только с помощью тепловизора. Например, на мостах и тяжелых опорных конструкциях при старении металла или нерасчетных деформациях начинает выделяться больше энергии, чем должно. Появляется возможность диагностировать состояние объекта, не нарушая его целостности, хотя могут возникнуть трудности, связанные с не очень высокой точностью, вызванной промежуточными конструкциями. Таким образом, тепловизор можно использовать как оперативный и, пожалуй, единственный контроллер состояния безопасности многих объектов и предотвращать катастрофы. Проверка функционирования дымоходов, вентиляции, процессов тепло- и массообмена, атмосферных явлений становиться на порядки удобнее, проще, информативнее. Широкое применение тепловидение нашло в медицине.

12 Применение тепловидения в медицине

Применение тепловидения в медицине

В современной медицине тепловизионное обследование представляет мощный диагностический метод, позволяющий выявлять такие патологии, которые плохо поддаются контролю другими способами. Тепловизионное обследование служит для диагностики на ранних стадиях (до рентгенологических проявлений, а в некоторых случаях задолго до появления жалоб больного) следующих заболеваний: воспаление и опухоли молочных желез, органов гинекологической сферы, кожи, лимфоузлов, ЛОР-заболевания, поражения нервов и сосудов конечностей, варикозное расширение вен; воспалительные заболевания желудочно-кишечного тракта, печени, почек; остеохондроз и опухоли позвоночника. Как абсолютно безвредный прибор тепловизор эффективно применяется в акушерстве и педиатрии. У здорового человека распределение температур симметрично относительно средней линии тела. Нарушение этой симметрии и служит основным критерием тепловизионной диагностики заболеваний. По участкам тела с аномально высокой или низкой температурой можно распознать симптомы более 150 болезней на самых ранних стадиях их возникновения. Термография — метод функциональной диагностики, основанный на регистрации инфракрасного излучения человеческого тела, пропорционального его температуре. Распределение и интенсивность теплового излучения в норме определяются особенностью физиологических процессов, происходящих в организме, в частности как в поверхностных, так и в глубоких органах. Различные патологические состояния характеризуются термоасимметрией и наличием температурного градиента между зоной повышенного или пониженного излучения и симметричным участком тела, что отражается на термографической картине. Этот факт имеет немаловажное диагностическое и прогностическое значение, о чем свидетельствуют многочисленные клинические исследования.

13 Выделяют два основных вида термографии

Выделяют два основных вида термографии

1.Контактная холестерическая термография. 2.Телетермография.

Телетермография основана на преобразовании инфракрасного излучения тела человека в электрический сигнал, который визуализируется на экране тепловизора. Контактная холестерическая термография опирается на оптические свойства холестерических жидких кристаллов, которые проявляются изменением окраски в радужные цвета при нанесении их на термоизлучающие поверхности. Наиболее холодным участкам соответствует красный цвет, наиболее горячим—синий. Нанесенные на кожу композиции жидких кристаллов, обладая термочувствительностью в пределах 0.001 С, реагируют на тепловой поток путем перестройки молекулярной структуры. После рассмотрения различных методов тепловидения встает вопрос о способах интерпретации термографического изображения. Существуют визуальный и количественный способы оценки тепловизионной картины. Визуальная (качественная) оценка термографии позволяет определить расположение, размеры, форму и структуру очагов повышенного излучения, а также ориентировочно оценивать величину инфракрасной радиации. Однако при визуальной оценке невозможно точное измерение температуры. Кроме того, сам подъем кажущейся температуры в термографе оказывается зависимым от скорости развертки и величины поля. Затруднения для клинической оценки результатов термографии заключаются в том, что подъем температуры на небольшом по площади участке оказывается малозаметным. В результате небольшой по размерам патологический очаг может не обнаруживаться. Радиометрический подход весьма перспективен. Он предполагает использование самой современной техники и может найти применение для проведения массового профилактического обследования, получения количественной информации о патологических процессах в исследуемых участках, а также для оценки эффективности термографии.

14 Некоторые применения тепловизионных устройств в промышленности

Некоторые применения тепловизионных устройств в промышленности

Нефтегазовый комплекс

Энергетика

Химическая промышленность

Машиностроение

Автомобильная промышленность

Состояние дымовых труб и газоходов состояние статоров генераторов проверка маслонаполненного оборудования теплоизоляция турбин, паро- и трубопроводов обнаружение мест присосов холодного воздуха контроль состояния теплотрасс

Проверка состояния электрооборудования контроль технологических линий поиск энергопотерь обнаружение утечек из газопроводов предотвращение пожаров

Проверка герметичности и изоляции емкостей для хранения различных жидкостей и газов

Контроль подшипников, зубчатых передач, валов, муфт и т. Д. Обнаружение несосности оборудования контроль температурных режимов сварки термоэластический анализ напряжений

Проектирование климатических систем автомобиля контроль за ультразвуковой сваркой амортизаторов разработка и проверка дисковых тормозов контроль теплообменных процессов в радиаторах, двигателях и выхлопных системах

15 Тепловизор

Тепловизор

Тепловидение является самым быстрым и простым способом для обнаружения возможных неисправностей, применяемым в профилактическом техобслуживании промышленного оборудования, управлении предприятиями, мониторинге производственных процес

Тепловидение позволяет выявлять раннее поражение сосудов

Тепловидение имеет широкую область применения в : видеонаблюдении, промышленной безопасности, траспортной безопасности, пожарной безопасности, а также для: правоохранительных органов, для служб общественной

16 Спасибо за внимание

Спасибо за внимание

Работу выполнила:

Габдуллина Альбина

«Тепловидение»
http://900igr.net/prezentatsii/fizika/Teplovidenie/Teplovidenie.html
cсылка на страницу
Урок

Физика

133 темы
Слайды
Презентация: Тепловидение.ppt | Тема: Излучение | Урок: Физика | Вид: Слайды