Треугольник Скачать
презентацию
<<  Треугольник 3 Равнобедренный треугольник  >>
Прямоугольный треугольник
Прямоугольный треугольник
С о д е р ж а н и е
С о д е р ж а н и е
Из истории математики
Из истории математики
Определения
Определения
Некоторые свойства прямоугольных треугольников
Некоторые свойства прямоугольных треугольников
Признаки равенства прямоугольных треугольников
Признаки равенства прямоугольных треугольников
Признаки равенства прямоугольных треугольников
Признаки равенства прямоугольных треугольников
Следует из первого признака равенства треугольников (по двум сторонам
Следует из первого признака равенства треугольников (по двум сторонам
Следует из второго признака равенства треугольников (по стороне и
Следует из второго признака равенства треугольников (по стороне и
Т.К. Сумма острых углов прямоугольного треугольника равна 90°, то два
Т.К. Сумма острых углов прямоугольного треугольника равна 90°, то два
Если гипотенуза и катет одного прямоугольного треугольника
Если гипотенуза и катет одного прямоугольного треугольника
Задачи по готовым чертежам
Задачи по готовым чертежам
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Контрольный тест
Об авторе
Об авторе
Папирус Ахмеса
Папирус Ахмеса
Е в к л и д
Е в к л и д
Это интересно
Это интересно
Ответ не правильный
Ответ не правильный
Вы верно ответили на все вопросы
Вы верно ответили на все вопросы
Желаю удачи в изучении математики
Желаю удачи в изучении математики
Слайды из презентации «Прямоугольный треугольник» к уроку геометрии на тему «Треугольник»

Автор: . Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Треугольник 4.ppt» бесплатно в zip-архиве размером 458 КБ.

Скачать презентацию

Прямоугольный треугольник

содержание презентации «Треугольник 4.ppt»
СлайдТекст
1 Прямоугольный треугольник

Прямоугольный треугольник

2 С о д е р ж а н и е

С о д е р ж а н и е

Из истории математики

Определения

Некоторые свойства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Задачи по готовым чертежам

Контрольный тест

Это интересно

Об авторе

3 Из истории математики

Из истории математики

Прямоугольный треугольник занимает почётное место в вавилонской геометрии, упоминание о нём часто встречается в папирусе Ахмеса.

Евклид употребляет выражения: «стороны, заключающие прямой угол», - для катетов; «сторона, стягивающая прямой угол», - для гипотенузы.

Термин гипотенуза происходит от греческого hypoteinsa, означающего тянущаяся под чем либо , стягивающая. Слово берёт начало от образа древнеегипетских арф, на которых струны натягивались на концы двух взаимно перпендикулярных подставок. Термин катет происходит от греческого слова «катетос », которое означало отвес , перпендикуляр. В средние века словом катет означали высоту прямоугольного треугольника, в то время, как другие его стороны называли гипотенузой, соответственно основанием. В XVII веке слово катет начинает применяться в современном смысле и широко распространяется, начиная с XVIII века.

4 Определения

Определения

Гипотенуза

Катет

Катет

Если один из углов треугольника прямой, то треугольник называется прямоугольным.

А

Треугольник – это геометрическая фигура, состоящая из трёх точек, не лежащих на одной прямой,

И трёх отрезков, соединяющих эти точки.

Сторона прямоугольного треугольника, лежащая против прямого угла, называется гипотенузой,

С

В

А две другие – катетами.

5 Некоторые свойства прямоугольных треугольников

Некоторые свойства прямоугольных треугольников

1. Сумма двух острых углов прямоугольного треугольника равна 900.

2. Катет прямоугольного треугольника, лежащий против угла в 300, равен половине гипотенузы.

3. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 300.

6 Признаки равенства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.

3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

7 Признаки равенства прямоугольных треугольников

Признаки равенства прямоугольных треугольников

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.

3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

8 Следует из первого признака равенства треугольников (по двум сторонам

Следует из первого признака равенства треугольников (по двум сторонам

и углу между ними).

Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.

А

А1

Дано:

? Авс = ? а1в1с1

Доказать:

В1

В

С1

С

Доказательство:

9 Следует из второго признака равенства треугольников (по стороне и

Следует из второго признака равенства треугольников (по стороне и

прилежащим к ней углам).

Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему углу другого, то такие треугольники равны.

А

А1

Дано:

Доказать:

? Авс = ? а1в1с1

В1

В

С1

С

Доказательство:

10 Т.К. Сумма острых углов прямоугольного треугольника равна 90°, то два

Т.К. Сумма острых углов прямоугольного треугольника равна 90°, то два

других острых угла также равны,

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.

А

А1

Дано:

? Авс = ? а1в1с1

Доказать:

В1

В

С1

С

Доказательство:

11 Если гипотенуза и катет одного прямоугольного треугольника

Если гипотенуза и катет одного прямоугольного треугольника

соответственно равны гипотенузе и катету другого, то такие треугольники равны.

А

А1

Дано:

? Авс = ? а1в1с1

Доказать:

В

В1

С1

С

Доказательство:

Наложим ? А1В1С1 на треугольник ? АВС.

Т.к. АС = А1С1 и АВ = А1В1, то они при наложении совпадут.

Тогда вершина А1 совместиться с вершиной А.

Но и тогда и вершины В1 и В также совместятся.

Следовательно, треугольники равны.

12 Задачи по готовым чертежам

Задачи по готовым чертежам

В

А

В

?

?

С

А

?

А

С

С

В

D

В

С

?

?

?

А

В

D

С

А

370

15 см

4,2 см

8,4 см

4 см

300

700

1200

13 Контрольный тест

Контрольный тест

1. Прямоугольным называется треугольник, у которого а) все углы прямые; б) два угла прямые; в) один прямой угол.

14 Контрольный тест

Контрольный тест

2. В прямоугольном треугольнике всегда а) два угла острых и один прямой; б) один острый угол, один прямой и один тупой угол; в) все углы прямые.

15 Контрольный тест

Контрольный тест

3. Стороны прямоугольного треугольника, образующие прямой угол, называются а) сторонами треугольника; б) катетами треугольника; в) гипотенузами треугольника.

16 Контрольный тест

Контрольный тест

4. Сторона прямоугольного треугольника, противолежащая прямому углу, называется а) стороной треугольника; б) катетом треугольника; в) гипотенузой треугольника.

17 Контрольный тест

Контрольный тест

18 Об авторе

Об авторе

Данная разработка выполнена учителем математики МОУ «Средняя общеобразовательная школа № 33» г.Брянска Кулешовой Галиной Николаевной. Все отзывы, предложения и вопросы вы можете направить по адресу:

E-maii: galka-kul@yandex.ru

Телефон: 8 – 920 – 607 – 20 – 95

Вернуться к содержанию

19 Папирус Ахмеса

Папирус Ахмеса

Математический папирус Ахмеса — древнеегипетское учебное руководство по арифметике и геометрии периода Среднего царства, переписанное около 1650 до н. э. писцом по имени Ахмес на свиток папируса длиной 5,25 м. и шириной 33 см.

Папирус Ахмеса был обнаружен в 1858 шотландским египтологом Генри Риндом и часто называется папирусом Райнда по имени его первого владельца. В 1870 папирус был расшифрован, переведён и издан. Ныне большая часть рукописи находится в Британском музеев Лондоне, а вторая часть — в Нью - Йорке.

Этот документ остается основным источником информации по математике древнего Египта. Он содержит чертежи треугольников с указаниями углов и формулами нахождения площадей.

Во вступительной части папируса Райнда объясняется, что он посвящён «совершенному и основательному исследованию всех вещей, пониманию их сущности, познанию их тайн». Все задачи, приведённые в тексте, имеют в той или другой степени практический характер и могли быть применены в строительстве, размежевании земельных наделов и других сферах жизни и производства. По преимуществу это задачи на нахождение площадей треугольника, четырёхугольников и круга, разнообразные действия с целыми числами, пропорциональное деление, нахождение отношений.

20 Е в к л и д

Е в к л и д

Евклид (E????????), древнегреческий математик, автор первого из дошедших до нас теоретических трактатов по математике. Сведения об Евклиде крайне скудны. Достоверным можно считать лишь то, что его научная деятельность протекала в Александрии в III веке до н. э. Евклид – первый математик александрийской школы. Его главная работа «Начала» (в латинизированной форме – «Элементы») содержит изложение планиметрии, стереометрии и ряда вопросов теории чисел; в ней он подвел итог предшествующему развитию греческой математики и создал фундамент дальнейшего развития математики.

Из других сочинений по математике надо отметить работу «О делении фигур», сохранившуюся в арабском переводе, четыре книги «Конические сечения», материал которых вошел в произведение того же названия Аполлония Пергского, а также «Поризмы», представление о которых можно получить из «Математического собрания» Паппа Александрийского. Евклид – автор работ по астрономии, оптике, музыке и др. Дошедшие до нас произведения Евклида собраны в издании «Euclidis opera omnia», ed. J. L. Heibert et Н. Menge, v. 1–9, 1883–1916, дающем их греческие подлинники, латинские переводы и комментарии позднейших авторов.

21 Это интересно

Это интересно

В любом треугольнике: 1. Против большей стороны лежит больший угол, и наоборот. 2. Против равных сторон лежат равные углы, и наоборот. 3. Сумма углов треугольника равна 180 ? 4. Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним. 5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности ( a < b + c, a > b – c; b < a + c, b > a – c; c < a + b, c > a – b ).

Треугольник – это многоугольник с тремя сторонами (или тремя углами). Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

22 Ответ не правильный

Ответ не правильный

Более внимательно изучи данную тему!

23 Вы верно ответили на все вопросы

Вы верно ответили на все вопросы

24 Желаю удачи в изучении математики

Желаю удачи в изучении математики

Вернуться к содержанию

«Прямоугольный треугольник»
http://900igr.net/prezentatsii/geometrija/Treugolnik-4/Prjamougolnyj-treugolnik.html
cсылка на страницу
Урок

Геометрия

39 тем
Слайды
Презентация: Прямоугольный треугольник | Файл: Треугольник 4.ppt | Тема: Треугольник | Урок: Геометрия | Вид: Слайды