Геометрия Скачать
презентацию
<<  Координаты точек на плоскости Правильные многогранники  >>
Координатная прямая
Координатная прямая
Координатная плоскость
Координатная плоскость
Координаты точки
Координаты точки
Декарт
Декарт
Точка
Точка
Расстояние
Расстояние
Расстояние между двумя точками
Расстояние между двумя точками
Пара перпендикулярных координатных прямых
Пара перпендикулярных координатных прямых
Плоскость
Плоскость
Координатные прямые
Координатные прямые
Найдите координату
Найдите координату
Координаты
Координаты
Точки
Точки
Ордината
Ордината
Чему равна абсцисса
Чему равна абсцисса
Изобразите угол
Изобразите угол
Угол
Угол
Перпендикуляр
Перпендикуляр
Прямая
Прямая
Найдите координаты середины отрезка
Найдите координаты середины отрезка
Геометрическое место
Геометрическое место
Треугольник
Треугольник
Изобразите треугольник
Изобразите треугольник
Изобразите четырехугольник
Изобразите четырехугольник
Четырехугольник
Четырехугольник
Упражнение 16
Упражнение 16
Упражнение 17
Упражнение 17
Нарисуйте ломаную
Нарисуйте ломаную
 Вершины
Вершины
Очертания
Очертания
Вершины
Вершины
Оси абсцисс
Оси абсцисс
Оси ординат
Оси ординат
Найдите координаты точки
Найдите координаты точки
Найдите координаты точки, полученной поворотом точки
Найдите координаты точки, полученной поворотом точки
Найдите геометрическое место точек
Найдите геометрическое место точек
Найдите расстояние от начала координат до точки
Найдите расстояние от начала координат до точки
Слайды из презентации «Декартовы координаты на плоскости» к уроку математики на тему «Геометрия»

Автор: *. Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Декартовы координаты на плоскости.ppt» бесплатно в zip-архиве размером 421 КБ.

Скачать презентацию

Декартовы координаты на плоскости

содержание презентации «Декартовы координаты на плоскости.ppt»
СлайдТекст
1 Координатная прямая

Координатная прямая

Координатной прямой, или координатной осью называется прямая, на которой выбраны точка O, называемая началом координат, и единичный отрезок OE, указывающий положительное направление координатной прямой.

Координатой точки А на координатной прямой называется расстояние x от точки А до начала координат О, взятое со знаком "+", если А принадлежит положительной полуоси, и со знаком "–", если А принадлежит отрицательной полуоси.

Теорема. Расстояние между точками А1, А2 на координатной прямой с координатами x1, x2 соответственно выражается формулой: А1А2 = |x2 – x1|.

2 Координатная плоскость

Координатная плоскость

Прямоугольной системой координат на плоскости называется пара перпендикулярных координатных прямых с общим началом координат. Начало координат обозначается буквой O, а координатные прямые обозначаются Ox, Oy и называются соответственно осью абсцисс и осью ординат. Плоскость, с заданной прямоугольной системой координат, называется координатной плоскостью.

3 Координаты точки

Координаты точки

Пусть A – точка на координатной плоскости. Через точку A проведем прямую, перпендикулярную оси Ox, и точку ее пересечения с осью Ox обозначим Ax. Координата этой точки на оси Ox называется абсциссой точки A и обозначается x. Аналогично через точку А проведем прямую, перпендикулярную оси Оy и точку ее пересечения с осью Оy обозначим Ay. Координата этой точки на оси Oy называется ординатой точки А и обозначается y.

Таким образом, точке А на координатной плоскости соответствует пара (x, y), называемая координатами точки на плоскости относительно данной системы координат. Точка А с координатами (x, y) обозначается А(x, y).

4 Декарт

Декарт

Р. Декарт.

Впервые прямоугольные координаты были введены Р. Декартом (1596-1650), поэтому прямоугольную систему координат называют также декартовой системой координат, а сами координаты – декартовыми координатами. Введение прямоугольных координат на плоскости позволило свести многие геометрические задачи к чисто алгебраическим и, наоборот, алгебраические задачи – к геометрическим. Метод, основанный на этом, называется методом координат.

5 Точка

Точка

Вопрос 1.

Какая прямая называется координатной?

Ответ. Координатной прямой, или координатной осью называется прямая, на которой выбраны точка O, называемая началом координат, и единичный отрезок OE, указывающий положительное направление координатной прямой.

6 Расстояние

Расстояние

Вопрос 2.

Что называется координатой точки на координатной прямой?

Ответ. Координатой точки А на координатной прямой называется расстояние x от точки А до начала координат О, взятое со знаком "+", если А принадлежит положительной полуоси, и со знаком "–", если А принадлежит отрицательной полуоси.

7 Расстояние между двумя точками

Расстояние между двумя точками

Вопрос 3.

Как выражается расстояние между двумя точками на координатной прямой?

Ответ. Расстояние между точками А1, А2 на координатной прямой с координатами x1, x2 соответственно выражается формулой: А1А2 = |x2 – x1|.

8 Пара перпендикулярных координатных прямых

Пара перпендикулярных координатных прямых

Вопрос 4.

Что называется прямоугольной системой координат на плоскости?

Ответ. Прямоугольной системой координат на плоскости называется пара перпендикулярных координатных прямых с общим началом координат.

9 Плоскость

Плоскость

Вопрос 5.

Какая плоскость называется координатной плоскостью?

Ответ. Плоскость, с заданной прямоугольной системой координат, называется координатной плоскостью.

10 Координатные прямые

Координатные прямые

Вопрос 6.

Как обозначаются и как называются координатные прямые на координатной плоскости?

Ответ. Координатные прямые обозначаются Ox, Oy и называются соответственно осью абсцисс и осью ординат.

11 Найдите координату

Найдите координату

Упражнение 1.

На координатной прямой точки A1, A2 имеют координаты x1 и x2 соответственно. Найдите координату середины A отрезка A1A2.

12 Координаты

Координаты

Упражнение 2.

Для заданных точек на координатной плоскости найдите их координаты.

Ответ: A(3, 1), B(2, 3), C(1, 2), D(–2, 2), E(–1, –2), F(4, –1).

13 Точки

Точки

Упражнение 3.

На координатной плоскости изобразите точки A(2, 1), B(1, 3), C(4, 2), D(-3, 2), E(-2, -3), F(3, -2).

14 Ордината

Ордината

Упражнение 4.

На прямой, параллельной оси абсцисс, взяты две точки. У одной из них ордината равна 2. Чему равна ордината другой точки?

Ответ: 2.

15 Чему равна абсцисса

Чему равна абсцисса

Упражнение 5.

На прямой, перпендикулярной оси абсцисс, взяты две точки. У одной из них абсцисса равна 3. Чему равна абсцисса другой точки?

Ответ: 3.

16 Изобразите угол

Изобразите угол

Упражнение 6.

Изобразите угол AOB, для которого: а) A(3, 0), O(0, 0), B(0, 3); б) A(3, 0), O(0, 0), B(3, 3); в) A(3, 0), O(0, 0), B(-3, 3). Найдите его величину.

17 Угол

Угол

Упражнение 7.

Изобразите угол ABC, для которого: а) A(2, 1), B(-1, 1), C(2, -2); б) A(2, -1), B(-1, 2), C(1, 4); в) A(-1, 0), B(3, 2), C(2, 4). Найдите его величину.

18 Перпендикуляр

Перпендикуляр

Упражнение 8.

Из точки А(2, 3) опущен перпендикуляр на ось абсцисс. Найдите координаты основания перпендикуляра.

Ответ: (2, 0).

19 Прямая

Прямая

Упражнение 9.

Через точку А(2, 3) проведена прямая, параллельная оси абсцисс. Найдите координаты ее точки пересечения с осью ординат.

Ответ: (0, 3).

20 Найдите координаты середины отрезка

Найдите координаты середины отрезка

Упражнение 10.

Найдите координаты середины отрезка АВ, если: а) А(1, -2), В(5, 6); б) А(-3, 4), В(1, 2); в) А(5, 7), В(-3, -5).

Ответ: а) (3, 2);

Б) (–1, 3);

В) (1, 1).

21 Геометрическое место

Геометрическое место

Упражнение 11.

Найдите геометрическое место точек на координатной плоскости, для которых: а) x 0; б) y < 0; в) x 0, y 0; г) xy > 0.

Ответ: а) Полуплоскость, расположенная справа от оси ординат;

Б) полуплоскость, расположенная ниже оси абсцисс, без самой оси абсцисс;

В) левый верхний квадрант координатной плоскости;

22 Треугольник

Треугольник

Упражнение 12.

Изобразите треугольник ABC, для которого A(-2, -1), B(2, -1), C(-2, 1). Какой это треугольник?

23 Изобразите треугольник

Изобразите треугольник

Упражнение 13.

Изобразите треугольник ABC, для которого A(-2, -2), B(2, -2), C(0, 1). Какой это треугольник?

24 Изобразите четырехугольник

Изобразите четырехугольник

Упражнение 14.

Изобразите четырехугольник ABCD, для которого A(-2, 0), B(0, -2), C(2, 0), D(0, 2). Какой это четырехугольник?

25 Четырехугольник

Четырехугольник

Упражнение 15.

Изобразите четырехугольник ABCD, для которого A(-2, 1), B(2, -1), C(3, 1), D(-1, 3). Какой это четырехугольник?

26 Упражнение 16

Упражнение 16

Изобразите четырехугольник ABCD, для которого A(-2, 1), B(2, 2), C(1, 4), D(-3, 3). Какой это четырехугольник?

27 Упражнение 17

Упражнение 17

Изобразите четырехугольник ABCD, для которого A(-2, -1), B(2, -1), C(1, 2), D(-1, 2). Какой это четырехугольник?

28 Нарисуйте ломаную

Нарисуйте ломаную

Упражнение 18.

Нарисуйте ломаную, вершины которой имеют координаты: (1, 0), (2, 1), (1, 3), (2, 4), (1, 4,5), (1, 6), (1,5, 5,5), (2,5, 5,5), (3, 6), (3, 4,5), (2, 4), (3, 3), (4,5, 2,5), (4,5, 0), (5, 2,5), (5, 0). Очертания какого животного она напоминает?

29  Вершины

Вершины

Упражнение 19.

Нарисуйте ломаную, вершины которой имеют координаты: (4, 0), (3, 1,5), (1, 2), (-1, 2), (-4, 0,5), (-6, 2), (-5,5, 0), (-6, -2), (-4, -0,5), (-1, -2), (1, -2), (3, -1,5), (4, 0). Очертания кого она напоминает?

30 Очертания

Очертания

Упражнение 20.

Нарисуйте ломаную, вершины которой имеют координаты: (-5, 1), (-6, 0,5), (-7, 1), (-4,5, 2,5), (-3,5, 2,5), (-4,5, 1), (5,5, 1), (5,5, -0,5), (4,5, -1,5), (4,5, -1), (5, -0,5), (5, 0,5), (4, 0,5), (4,5, 0), (3,5, -2), (3, -2), (3, -1), (2, -0,5), (-2, -0,5), (-3,5, -1), (-4,5, -2), (-5,5, -2), (-5, -1), (-4,5, -1), (-4,5, 2), (-5, 1), (-5,5, -1), (-5, -1). Очертания какой породы собаки она напоминает?

31 Вершины

Вершины

Упражнение 21.

Нарисуйте ломаную, вершины которой имеют координаты: (0, 0), (-1, 1), (-3, 1), (-2, 3), (-3, 3), (-4, 6), (0, 8), (2, 5), (2, 11), (6, 10), (3, 9), (4, 5), (3, 0), (2, 0), (1, -7), (3, -8), (0, -8), (0, 0). Очертания какой птицы она напоминает?

32 Оси абсцисс

Оси абсцисс

Упражнение 22.

Найдите координаты точки, симметричной точке A(x, y) относительно: а) оси абсцисс; б) оси ординат; в) начала координат.

Ответ: а) (x, –y);

Б) (–x, y);

В) (–x, –y).

33 Оси ординат

Оси ординат

Упражнение 23.

Точки N(…, 6) и N1(2, …) симметричны относительно оси ординат. Назовите пропущенные координаты этих точек.

Ответ: N(–2, 6); N1(2, 6).

34 Найдите координаты точки

Найдите координаты точки

Упражнение 24.

Найдите координаты точки, полученной поворотом точки A вокруг начала координат на угол 90о против часовой стрелки, если точка A имеет координаты: а) (2, 1); б) (-1, 3); в) (-2, -3); г) (1, -3).

Ответ: а) (–1, 2);

Б) (–3, –1);

В) (3, –2);

Г) (3, 1).

35 Найдите координаты точки, полученной поворотом точки

Найдите координаты точки, полученной поворотом точки

Упражнение 25.

Найдите координаты точки, полученной поворотом точки A(1, 0) вокруг начала координат против часовой стрелки на угол: а) 30о; б) 45о; в) 60о.

36 Найдите геометрическое место точек

Найдите геометрическое место точек

Упражнение 26.

Найдите геометрическое место точек на координатной плоскости, для которых: а) x = 2; б) y = -1; в) |x| = 3; г) |y| 1; д) x = y; е) x = -y.

Ответ: а) Прямая, параллельная оси ординат;

Б) прямая, параллельная оси абсцисс;

В) две прямые, параллельные оси ординат;

Г) две полуплоскости;

Д) прямая;

Е) прямая.

37 Найдите расстояние от начала координат до точки

Найдите расстояние от начала координат до точки

Упражнение 27.

Найдите расстояние от начала координат до точки с координатами: а) (1, 1); б) (-3, 4); в) (-1, -2).

Б) 5;

«Декартовы координаты на плоскости»
http://900igr.net/prezentatsii/matematika/Dekartovy-koordinaty-na-ploskosti/Dekartovy-koordinaty-na-ploskosti.html
cсылка на страницу
Урок

Математика

67 тем
Слайды
Презентация: Декартовы координаты на плоскости.ppt | Тема: Геометрия | Урок: Математика | Вид: Слайды
900igr.net > Презентации по математике > Геометрия > Декартовы координаты на плоскости.ppt