Геометрия Скачать
презентацию
<<  Декартовы координаты на плоскости Измерение углов  >>
Научно-исследовательский семинар кафедры высшей математики-1 МИЭТ под
Научно-исследовательский семинар кафедры высшей математики-1 МИЭТ под
Абстрактный Тороидальный Гексадекаэдр — это
Абстрактный Тороидальный Гексадекаэдр — это
Все ее автоморфизмы найдены при помощи компьютера: С. А. Л.,
Все ее автоморфизмы найдены при помощи компьютера: С. А. Л.,
Группу Aut (АТГ) можно определить и без компьютера
Группу Aut (АТГ) можно определить и без компьютера
Таким образом, группа Aut (АТГ) может быть порождена так: Aut (АТГ) =
Таким образом, группа Aut (АТГ) может быть порождена так: Aut (АТГ) =
Бипирамидальный Тороидальный Гексадекаэдр (БТГ) — геометрическая
Бипирамидальный Тороидальный Гексадекаэдр (БТГ) — геометрическая
Реклама
Правильные многогранники
Правильные многогранники
Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия»
Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия»
Парадигма Кокстера Парадигма Кокстера «групп и геометрии» — это
Парадигма Кокстера Парадигма Кокстера «групп и геометрии» — это
Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы
Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы
Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы
Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы
Тор Клиффорда: (x_1)
Тор Клиффорда: (x_1)
С. А. Л., Polyhedral suspensions of arbitrary genus, Graphs &
С. А. Л., Polyhedral suspensions of arbitrary genus, Graphs &
Доказательство: На рисунке справа — экватор БТГ переложен из
Доказательство: На рисунке справа — экватор БТГ переложен из
АТГ реализовывается как подкомплекс 2-мерного скелета гексадекахорона
АТГ реализовывается как подкомплекс 2-мерного скелета гексадекахорона
Вспомним, что Aut (АТГ) порож- дается тремя автоморфизмами:
Вспомним, что Aut (АТГ) порож- дается тремя автоморфизмами:
Таким образом, получено точное представление группы Aut (АТГ) степени
Таким образом, получено точное представление группы Aut (АТГ) степени
Резюмируя, многогранники БТГ и ПТГ — различные геометрические модели
Резюмируя, многогранники БТГ и ПТГ — различные геометрические модели
Открытые вопросы ¦ Существуют ли другие правильные 2-мерные
Открытые вопросы ¦ Существуют ли другие правильные 2-мерные
Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в
Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в
Теорема (Рингель и Янгс): Для каждого целого положительного n такого,
Теорема (Рингель и Янгс): Для каждого целого положительного n такого,
Реализуются ли при этом геометрически все автоморфизмы триангуляции
Реализуются ли при этом геометрически все автоморфизмы триангуляции
Итак, что же такое правильный многогранник
Итак, что же такое правильный многогранник
Такое определение правильного многогранника предполагает более широкий
Такое определение правильного многогранника предполагает более широкий
6 марта, 2009 г. Запуск ракеты Дельта II с Кеплером на поиск планет, в
6 марта, 2009 г. Запуск ракеты Дельта II с Кеплером на поиск планет, в
Многогранники Кеплера-Пуансо (не типа сферы
Многогранники Кеплера-Пуансо (не типа сферы
Малый звездчатый додекаэдр
Малый звездчатый додекаэдр
Мы же обобщаем по другому направлению: не допуская самопересечений,
Мы же обобщаем по другому направлению: не допуская самопересечений,
Спасибо за внимание
Спасибо за внимание
Слайды из презентации «Правильные многогранники» к уроку математики на тему «Геометрия»

Автор: . Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Многогранник.ppt» бесплатно в zip-архиве размером 273 КБ.

Скачать презентацию

Правильные многогранники

содержание презентации «Многогранник.ppt»
СлайдТекст
1 Научно-исследовательский семинар кафедры высшей математики-1 МИЭТ под

Научно-исследовательский семинар кафедры высшей математики-1 МИЭТ под

руководством проф. Гончарова В.А., проф. Кожухова И.Б. и проф. Поспелова А.С. 24 ноября, 2009 г. Правильные многогранники в четырехмерном пространстве «В огромном саду геометрии каждый найдет букет себе по вкусу.» Давид Гильберт Сергей Александрович Лавренченко (С. А. Л.) http://lawrencenko.ru.

2 Абстрактный Тороидальный Гексадекаэдр — это

Абстрактный Тороидальный Гексадекаэдр — это

комбинаторно-топологический объект — правильная триангуляция тора с 8 вершинами и 16 гранями. С. А. Л., Неприводимые триангу- ляции тора, Укр. геометр. сб. 30 (1987) 52–62. ¦ АТГ — правильная карта на торе: каждая грань — треугольник и степень каждой вершины равна 6. ¦ Ее граф изоморфен 1-скелету гексадекахорона, т.е. полному ? 4-дольному графу K_{2,2,2,2}.

3 Все ее автоморфизмы найдены при помощи компьютера: С. А. Л.,

Все ее автоморфизмы найдены при помощи компьютера: С. А. Л.,

Перечисление в явном виде всех автоморфизмов неприводимых триангу- ляций тора и всех укладок на тор помечен ных графов этих триангуляций. Харьков, 1987. – 57 с., Деп. в УкрНИИНТИ 01.10.87, № 2779 – Ук87. ?_1 = id (тождественный) ?_2 = (35) (47) ?_3 = (28) (34) (57) ?_4 = (28) (37) (45) ?_5 = (12) (47) (68) ?_6 = (12) (35) (68) ?_7 = (1268) (3457) ?_8 = (1268) (3754) ?_9 = (13246587) ?_10 = (13876524) ?_11 = (13) (27) (48) (56) ?_12 = (1365) (2784) ?_13 = (14) (23) (58) (67) ?_14 = (1467) (2385) ?_15 = (14256783) ?_16 = (14836725) ?_17 = (1563) (2487) ?_18 = (15) (24) (36) (78) ?_19 = (15846327) ?_20 = (15276384) ?_21 = (16) (34) (57) ?_22 = (16) (37) (45) ?_23 = (16) (28) ?_24 = (16) (28) (35) (47) ?_25 = (17856423) ?_26 = (17236485) ?_27 = (1764) (2583) ?_28 = (17) (25) (38) (46) ?_29 = (1862) (3457) ?_30 = (1862) (3754) ?_31 = (18) (26) (47) ?_32 = (18) (26) (35).

4 Группу Aut (АТГ) можно определить и без компьютера

Группу Aut (АТГ) можно определить и без компьютера

Эта группа вершинно- транзитивная, потому что в ней есть единый циклический сдвиг всех вершин: ?_20 = (15276384). Подгруппа Shift = <?_20> ? Z_8. Она ненормальна. С другой стороны, стабилизатор каждой вершины есть подгруппа изоморфная Z_2 ? Z_2, ненормальная. Например, стабилизатор вершины 8, есть подгруппа Stab = <?_2, ?_22> ? Z_2 ? Z_2, порожденная 2-мя инволюциями ?_2 = (35)(47) и ?_22 = (16)(37)(45) (реализуемыми геометрически «симметриями относительно перпендикулярных прямых»). Эта подгруппа ненормальна.

5 Таким образом, группа Aut (АТГ) может быть порождена так: Aut (АТГ) =

Таким образом, группа Aut (АТГ) может быть порождена так: Aut (АТГ) =

<?_2, ?_22, ?_20> = (Z_2 ? Z_2) Z_8, где Z_2 ? Z_2 и Z_8 — как указаны на предыдущем слайде, причем произведение на Z_8 не является прямым. Таким образом, |Aut (АТГ)| = |Shift| • |Stab| : |Shift ? Stab| = 8 • 4 : 1 = 32.

6 Бипирамидальный Тороидальный Гексадекаэдр (БТГ) — геометрическая

Бипирамидальный Тороидальный Гексадекаэдр (БТГ) — геометрическая

модель АТГ С. А. Л., Все неприводимые триангуляции тора реализуются в E3 в виде многогран- ников, манускрипт, Мехмат МГУ (1983). Эта работа была выполнена под руко- водством профессора И. Х. Сабитова и заняла 2-е место в конкурсе научных студенческих работ за 1983 год, ежегодно проводимом Мехматом МГУ. ? Экватор у БТГ.

7
8 Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия»

Мы делаем четкое различие между понятиями «автоморфизм» и «симметрия»

Далее, термин «симметрия» используется в широком смысле: для обозначения и настоящих симметрий, и вращений пространства. Ни один автоморфизм АТГ, кроме тождественного, не реализуется геометрически, т.е. движениями объемлющего 3-мерного пространства, переводящими БТГ в себя, поэтому Sym (БТГ) = { id }. Все автоморфизмы становятся скрытыми симметриями геометрической модели БТГ.

9 Парадигма Кокстера Парадигма Кокстера «групп и геометрии» — это

Парадигма Кокстера Парадигма Кокстера «групп и геометрии» — это

целостная система взглядов и положений по сближению и соединению алгебры с геометрией. Одно из этих положений состоит в том, что надо реализовывать геометрически не только сам комбинаторный или топологический объект, а также его автоморфизмы в виде геометрических симметрий его геометрической модели в пространстве. ¦ H.S.M. Coxeter, Regular Complex Polytopes, Cambridge University Press, Cambridge, 2nd edit. 1991. ¦ H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Springer, Berlin 1980 (4th edit.).

Хaролд Скотт МакДoналд («Доналд») Кокстер (1907—2003).

10 Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы

Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы

Кокстера. Многогранные реализации групп правильных карт на 2-мерных поверхностях — вклад в развитие этой парадигмы. Старая идея: Чтобы исключить скрытые симметрии, можно использовать модель Пуанкаре плоскости Лобачевского. ? С. А. Л., Plummer M.D., Zha X.: Isoperimetric constants of infinite plane graphs, Discrete & Computational Geometry 28 (3): 313-330 (2002).

11 Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы

Борьба со скрытыми симметриями — путь претворения в жизнь парадигмы

Кокстера.

Новая идея: Но что, если настаивать на том, чтобы оставаться в евклидовом пространстве? Это возможно! Но только, если достаточно увеличить размерность этого пространства. (А не пытаться загнать объект в пространство заведомо меньшей размерности, как мы делали выше, строя БТГ.)

12 Тор Клиффорда: (x_1)

Тор Клиффорда: (x_1)

+ (x_2)? = 1 = (x_3) ? + (x_4)?. Для 2-мерного тора более подходит евклидово 4-мерное пространство, чем 3-мерное. Например, АТГ не удается вложить в 3-пространство без скрытых симметрий, а в 4-пространство уже можно. В 3-мерном пространстве тор переходит в себя только вращениями в направлении параллелей, а в 4-мерном пространстве также вращениями в направлении меридианов. http://alem3d.obidos.org/en/torusio/math.

13 С. А. Л., Polyhedral suspensions of arbitrary genus, Graphs &

С. А. Л., Polyhedral suspensions of arbitrary genus, Graphs &

Combinatorics, 26 (2010), в печати. Теорема (С. А. Л.): В евклидовом 4-мерном пространстве существует 2-мерный тороидальный многогранник с 8 вершинами и 16 треугольными гранями, имеющий следующие три свойства правильности. Этот многогранник будет называться правильным тороидальным гексадекаэдром и будет обозначаться ПТГ. (1) Все грани ПТГ— равносторонние треугольники. (2) ПТГ не имеет скрытых симметрий в том смысле, что группа Aut (АТГ) точно представлена группой Sym (ПТГ) в 4-мерном пространстве. Группа Sym (ПТГ) действует транзитивно на множестве вершин ПТГ.

14 Доказательство: На рисунке справа — экватор БТГ переложен из

Доказательство: На рисунке справа — экватор БТГ переложен из

2-пространства в 3-пространство в геометрически симметричном виде, как 2-мерный подкомплекс октаэдра. Затем к координатам каждой вершины добавили четвертую координату w = 0, тем самым поместив экватор уже в 4-пространство. Две остающиеся вершины, 1 и 6, располагаются на четвертой координатной оси Ow и имеют координаты (0, 0, 0, 1) и (0, 0, 0, -1), соответственно.

15 АТГ реализовывается как подкомплекс 2-мерного скелета гексадекахорона

АТГ реализовывается как подкомплекс 2-мерного скелета гексадекахорона

(или 4-мерного гипероктаэдра) в 4-мерном пространстве. Восемь вершин гексадекахорона: (±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), (0, 0, 0, ±1).

Все вершины соединены ребрами, кроме противолежащих пар. Значит все грани АТГ геометрически реализуются равносторонними треугольниками со стороной v2. Свойство (1) доказано. Докажем свойство (2), что все 32 автоморфизма триангуляции АТГ реализуются геометрически в 4D модели в виде ПТГ.

1 (0, 0, 0, 1) — северный полюс 6 (0, 0, 0, -1) — южный полюс

16 Вспомним, что Aut (АТГ) порож- дается тремя автоморфизмами:

Вспомним, что Aut (АТГ) порож- дается тремя автоморфизмами:

_2 = (35) (47), ?_22 = (16) (37) (45), ?_20 = (15276384) и соответственно представима в 4-пространстве дискретной группой движений, порожденной следующими ортогональными матрицами: A_2 = A_22 = A_20 = ¦ 1 0 0 0¦ ¦ 1 0 0 0¦ ¦ 0 0 1 0¦ ¦ 0 -1 0 0¦ ¦ 0 0 -1 0¦ ¦ 1 0 0 0¦ ¦ 0 0 -1 0¦ ¦ 0 -1 0 0¦ ¦ 0 0 0 1¦ ¦ 0 0 0 1¦ ¦ 0 0 0 -1¦ ¦ 0 -1 0 0¦.

1 (0, 0, 0, 1) и 6 (0, 0, 0, -1)

17 Таким образом, получено точное представление группы Aut (АТГ) степени

Таким образом, получено точное представление группы Aut (АТГ) степени

4. Где —специальная ортогональная группа степени 4, а — полная линейная группа степени 4, И, таким образом, все автоморфизмы реализуются только вращениями 4-мерного пространства. ¦.

18 Резюмируя, многогранники БТГ и ПТГ — различные геометрические модели

Резюмируя, многогранники БТГ и ПТГ — различные геометрические модели

абстрактной триангуляции тора АТГ. Первый — в трехмерном евклидовом пространстве, а второй — в четырехмерном. В 3D модели БТГ все автоморфизмы, кроме тождественного, являются скрытыми симметриями. Другими словами, индекс подгруппы симметрий в группе автоморфизмов = 32. В 4D модели ПТГ же, наоборот, все до единого автоморфизмы реализуются геометрически, т.е. индекс подгруппы симметрий = 1.

19 Открытые вопросы ¦ Существуют ли другие правильные 2-мерные

Открытые вопросы ¦ Существуют ли другие правильные 2-мерные

многогранники, кроме ПТГ, в (евклидовом) пространстве размерности 4 ? ¦ А в пространствах высших размерностей? ¦ Существуют ли в 3-мерном пространстве правильные многогранники топологических типов, отличных от сферы? Гипотеза: Нет.

20 Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в

Существуют ли другие правильные 2-мерные многогранники, кроме ПТГ, в

пространствах размерностей ? 4 ? В частности, реализуется ли правильная триангуляция тора с полным графом K_7 в виде правильного многогранника в евклидовом пространстве высшей размерности?

21 Теорема (Рингель и Янгс): Для каждого целого положительного n такого,

Теорема (Рингель и Янгс): Для каждого целого положительного n такого,

что (n–3)(n–4) делится нацело на 12, полный граф K_n триангулирует ориентируемую поверхность рода (n–3)(n–4)/12. ¦ Ringel G., Youngs J.W.T., Solution of the Heawood map-colouring problem Proc. Nat. Acad. Sci. USA, 60 (1968), 438—445. Отправная лемма (С. А. Л.): Каждая такая триангуляция вкладывается в n-пространство так, что все грани реализуются изометричными равносторонними треугольниками. Доказательство: Вложить K_n в 1-скелет n-мерного гипероктаэдра. Например K_7 в 7-мерный гипероктаэдр. ¦.

22 Реализуются ли при этом геометрически все автоморфизмы триангуляции

Реализуются ли при этом геометрически все автоморфизмы триангуляции

Оказывается, будет вершинно-транзитивной группа автоморфизмов любой триангуляции тора, в которой степень каждой вершины = 6. Datta B., Upadhyay A.K.: Degree-regular triangulations of torus and Klein bottle, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 279–307. Однако, это может быть легким следствием из результата Негами: Negami, S.: Uniqueness and faithfulness of embedding of toroidal graphs, Discrete Math. 44 (1983), 161-180.

23 Итак, что же такое правильный многогранник

Итак, что же такое правильный многогранник

? Что касается 2-мерных многогранников в евклидовом n-мерном пространстве, тот заслуживает звания «правильный», который: ¦ правильный как абстрактная карта на 2-мерной поверхности, ¦ имеет транзитивную (здесь возможны варианты) группу автоморфизмов и ¦ не имеет скрытых симметрий.

24 Такое определение правильного многогранника предполагает более широкий

Такое определение правильного многогранника предполагает более широкий

класс многогранников, чем в классическом смысле. Исторически, когда ограничивались многогранниками в 3-мерном пространстве, нашли пять Платоновых тел. Затем, допустив самопересечения, нашли еще четыре правильных многогранника Кеплера-Пуансо. Как и у Платоновых тел, ¦ все их грани являются изометричными правильными многоугольниками, и ¦ все их вершины идентичны.

25 6 марта, 2009 г. Запуск ракеты Дельта II с Кеплером на поиск планет, в

6 марта, 2009 г. Запуск ракеты Дельта II с Кеплером на поиск планет, в

некотором отношении как наша собственная. Названный в честь немецкого ученого 17-го века Иоганна Кеплера, который открыл законы движения планет, НАСАвский космический аппарат Кеплер использует эти законы для поиска миров подобных Земле вокруг удаленных звезд. Кеплер, ключевая фигура научной революции, думал, что Вселенная состоит из вложенных друг в друга Платоновых тел, вписанные в которых сферы определяют планетарные орбиты в нашей солнечной системе. Вместе, Платоновы тела и многогранники Кеплера-Пуансо образуют множество 9-ти правильных многогранников.

26 Многогранники Кеплера-Пуансо (не типа сферы

Многогранники Кеплера-Пуансо (не типа сферы

).

В 1813 г. (или 1812 ??) Коши доказал, что кроме пяти Платоновых тел и четырех многогранников Кеплера-Пуансо больше нет правильных многогранников. Может быть Коши подразумевал «в трехмерном пространстве»? A. L. Cauchy, Recherches sur les polyedres; Premier memoire. J. Ecole Polytech. 9 (1813), 68 – 98.

Малый звездчатый додекаэдр

Большой звездчатый додекаэдр

Большой додекаэдр

Большой икосаэдр

27 Малый звездчатый додекаэдр

Малый звездчатый додекаэдр

¦ Многогранник в 3-мерном пространстве с самопересечениями. (Сергей Петрович Новиков не признает многогранников с самопересечениями.) ¦ У него 12 вершин, 30 ребер и 12 граней. (Для сравнения, у додекаэдра 20 вершин, 30 ребер и 12 граней.)

28 Мы же обобщаем по другому направлению: не допуская самопересечений,

Мы же обобщаем по другому направлению: не допуская самопересечений,

увеличиваем размерность объемлющего пространства. И находим еще один правильный многогранник — правильный тороидальный гексадекаэдр, ПТГ На рисунке слева изображено его сечение экваториальной гиперплоскостью Oxyz (с уравнением w = 0 ). Остается открытым вопрос о более элегантном пред- ставлении ПТГ картинкой.

1 (0, 0, 0, 1) — северный полюс 6 (0, 0, 0, -1) — южный полюс

29 Спасибо за внимание

Спасибо за внимание

Вопросы?

«Правильные многогранники»
http://900igr.net/prezentatsii/matematika/Mnogogrannik/Pravilnye-mnogogranniki.html
cсылка на страницу
Урок

Математика

67 тем
Слайды
Презентация: Правильные многогранники | Файл: Многогранник.ppt | Тема: Геометрия | Урок: Математика | Вид: Слайды