Интересные числа Скачать
презентацию
<<  Числа в жизни Числа Фибоначчи  >>
Математическое исследование и воображение
Математическое исследование и воображение
Математическое исследование
Математическое исследование
Спирали
Спирали
Спирали многообразны
Спирали многообразны
Кролики и числа
Кролики и числа
Математика растений
Математика растений
Можно продолжить исследование…
Можно продолжить исследование…
Спирали роста
Спирали роста
Парфенон в Афинах
Парфенон в Афинах
Золотые прямоугольники
Золотые прямоугольники
Слайды из презентации «Спирали» к уроку математики на тему «Интересные числа»

Автор: Виноградова О.А.. Чтобы увеличить слайд, нажмите на его эскиз. Чтобы использовать презентацию на уроке, скачайте файл «Спирали.pptx» бесплатно в zip-архиве размером 857 КБ.

Скачать презентацию

Спирали

содержание презентации «Спирали.pptx»
СлайдТекст
1 Математическое исследование и воображение

Математическое исследование и воображение

Презентация на тему: «Математическое исследование и воображение».

Кто разъяснял пичужке высший смысл Единства содержания и формы? О как абстрактны и корявы корни, Но как прекрасен и логичен лист…

Автор презентации: Виноградова О.А., учитель математики МБОУ ООШ №26 г. Старый Оскол

2 Математическое исследование

Математическое исследование

–это поход в неизвестность.

Направление движения человек выбирает сам ,но сделать выбор помогут великие математики ,которые прошли свой путь в науке. Исследовательская работа начинается с какого-нибудь примера ,идеи, факта .Человек задает себе вопрос : «Что можно получить из этого примера? Что получится, если сделать так или иначе ? Почему это происходит ?»-и так далее. Математическое исследование-работа творческая, испытываешь удовольствие от сознания , что ты объяснил всевозможные варианты , или от того, что ты нашел ответ задачи , или просто от ощущения ,что ты занят чем-то стоящим.В чем ценность математического исследования? А в том, что оно развивает воображение и показывает , как математика может стать дорогой к открытию. Итак, пусть воображение служит нам проводником в путешествии в математику!

3 Спирали

Спирали

Что общего имеют Млечный Путь, ананас, горный баран и морская раковина с последовательностью чисел 1,1,2,2,3,3,4,…? Дело в том, что все это –примеры спиралей. И числа ? Да, и числа тоже, потому что последовательность 1,1,2,2,3,3,4,… описывает вот такую спираль на квадратной сетке: Похожая спираль на треугольной сетке описывается последовательностью 1,2,3,4,5,…

4 Спирали многообразны

Спирали многообразны

. Последовательности 2,2,1,1,3,3,1,1,4,4,1,…приводят к самопересекающимся линиям. Большинство спиралей - трехмерные. Некоторые из них не расширяются. Например, спирали винтовой лестницы или металлического болта имеют постоянный радиус. Такие спирали называются геликсами. Существуют криволинейные спирали. Спирали можно получить ,складывая лист бумаги «гармошкой» сначала по горизонтали, а затем по вертикали.

5 Кролики и числа

Кролики и числа

В «Книге Абака»,написанной в 1202 году итальянским математиком по имени Леонардо Фибоначчи есть головоломка, которая очаровывает математиков возникающей в ответе последовательностью чисел. Эта последовательность 1,1,2,3,5,8,13,21,… встречается в самых неожиданных ситуациях. Ее члены с их таинственными свойствами известны сейчас как числа Фибоначчи. Каждое новое число в последовательности является суммой двух предыдущих. Головоломка В январе тебе подарили пару новорожденных кроликов. Через 2 месяца они рождают новую пару кроликов. Каждая новая пара кроликов через 2 месяца после рождения рождает новую пару. Сколько пар кроликов у тебя будет в декабре ?

6 Математика растений

Математика растений

Если разрезать пучок сельдерея, то увидишь, как стебли накладываются друг на друга, так что срез напоминает водоворот. Это потому, что, как и многие растения, сельдерей растет спиралями. Каждый новый стебель вырастает с внутренней стороны предыдущего , и растение как бы закручивается. На самом деле в срезе сельдерея можно увидеть 3 спирали: 1 по часовой стрелке и 2 против нее.

7 Можно продолжить исследование…

Можно продолжить исследование…

Можно продолжить исследование, гуляя в парке или в лесу. А попав куда-нибудь на юг или в ботанический сад, или просто купив в магазине, можно изучить разные сочные плоды и кактусы.

8 Спирали роста

Спирали роста

Спирали роста есть у всех кактусов, у пальм, в сосновых шишках, в цветках маргаритки или подсолнуха и у других растений. Например, колючки ананаса образуют сразу 2 множества спиралей: 8 по часовой стрелке и 13 - против нее. Поразительно то, что эти 2 числа - соседние числа Фибоначчи ( 1 и 2 у сельдерея, 5 и 8 у сосновой шишки,21 и 34 у подсолнуха ).

9 Парфенон в Афинах

Парфенон в Афинах

Числа Фибоначчи и золотое сечение

Даже сейчас, когда он стоит в развалинах, Парфенон в Афинах - это одно из самых знаменитых сооружений в мире. Он был построен в эпоху расцвета древнегреческой культуры. Фасад Парфенона вписывается в прямоугольник. . Стороны которого образуют так называемое золотое сечение.

10 Золотые прямоугольники

Золотые прямоугольники

Длина прямоугольника больше его ширины примерно в 1.6 раза. Вычислить точное значение нельзя; греки умели строить «золотые прямоугольники», но не умели находить длины сторон. Современные ЭВМ могут вычислить отношение длины к ширине с любой заданной точностью. С точностью до трех знаков после запятой оно равно 1,618. Древние греки считали, что прямоугольники, стороны которых образуют золотое сечение, имеют более приятную форму для глаз. Греки приписывали золотому сечению и некоторые магические свойства , так же как и египтяне, использовавшие его при расчетах пирамид. Любой прямоугольник, стороны которого относятся как 1:1,618, называется «золотым». Если разделить каждое из чисел Фибоначчи на предыдущее, то получится: 1:1=1; 2:1=2; 3:2=1,5; 5:3=1,666666; 8:5=1,6; 13:8=1,625; 21:13=1.615384;… Очевидно, с увеличением чисел Фибоначчи мы все ближе подходим к золотому сечению.

«Спирали»
http://900igr.net/prezentatsii/matematika/Spirali/Spirali.html
cсылка на страницу
Урок

Математика

67 тем
Слайды
Презентация: Спирали.pptx | Тема: Интересные числа | Урок: Математика | Вид: Слайды